Occurrence Data Analysis of Calliphorid Flies in Indiana.

Brianna Pennell

Abstract

Occurrence data collection is one of the many techniques still used today for statistical analysis of a species. For forensics occurrence data of calliphorid flies, also known as blow flies, are of great importance to the field, especially in time of death approximation. The United States of American does not have any published calliphorid occurrence data from consistent collection. The collection from the Purdue University forensics entomology department, known as Indiana Carrion Fly Occurrence ID or ICFOD, is used for this analysis. Management and identification of flies are put into a three-stage process. The allocation of identifications per day, the data input of the identifications into an electronic data sheet, and the analysis of occurrence data with local weather data. The two most prominent species in Indiana are *Phormia regina* and *Lucilia coeruleiviridis*, however in the older data under another system of identification found that *Lucilia illustris* is also prominent in the area. *Phormia regina* and *Lucilia coeruleiviridis* of bivoltism in Indiana. These findings raise more questions about the older identification process in assessing occurrence data due to L. illustris preference for colder temperatures.

Introduction

Occurrence data is the most widely used data to analyze populations of concern. The technique is commonly used in pest management, agriculture, conservation, ecology, parasitology, and forensics. When it comes to blow flies of the family Calliphoridae, forensics is the focus for occurrence data. There are well over 1,000 species of calliphorid flies around the earth, with only a handful commonly found in the United States of America (Kosmann 2013). In Indiana alone, there is less than 10 different common species under Calliphoridae. The most commonly known is the Black Blow fly, Phormia regina, and the Green Bottle Fly, Lucilia coeruleiviridis. The importance of these species for forensics is that their instar stages of their lifecycle is used to calculate the window of death for a cadaver just by knowing the weather data to grow a brood sample from the body (Mohr 2014).

The lifecycle of most calliphoridae consist of a female going to a carrion to lay 150-

200 eggs (Byrd 2001). This can occur rapidly due to chemicals produced before death as portrayed in Edgar Allan Poe's literary pieces. The first larval instar last up to 8-24 hours before the next 2 instars cycle through. Once at the third instar the larvae leave the carrion to pupate in the soil. It is approximately 14 days later when the adult stage emerges from the soil to go mate and find another carrion to start the cycle again. Not all species are purely carrion feeders as the less common to trap species, Pollenia, is a parasite on earthworms as well as other hosts (Capinera 2008).

This data will be the first to be publicly published in the United States solely as occurrence data analysis. It will be a stepping stone in the research that will benefit forensic analysis in the lab and out in the field.

Materials and Methods

Sample Collection and Labelling

The fly survey was conducted by Purdue University research areas around Indiana. These traps would be set with tainted chicken and pork parts in a cone trap. Each trap would be set to be checked between 7 to 14 days to be collected and transported back in 95% alcohol to slow down the decay process of the specimens. Adult flies would be separated from larvae as well as other insects that may have got into the traps, such as carrion beetles. Adult flies would be pinned once dry enough to be able to be handed to be placed in trays for labelling and identification by students in the lab. The labels on the flies would be markers for databasing the identifications starting with IAA0001 from 2014 to the most current 2018 specimens, however this paper focuses on just 4997 specimens from 2014 to 2015.

Identification

Unidentified flies would be put in trays each day to be identified by students through a three-person identification process. The threeperson identification process is to ensure precision and accuracy in the identifications before putting them into the electronic sheet for databasing and analysis. A program with picture verification of the fly traits to guide identifications was used as a tool for more efficient identifications under a microscope. Lab notes would be recorded by hand for archiving for verification and unusual characteristics. Flies that were too damaged to identify due to decomposition, too immature of features, or poor pinning techniques were set as outliers if not identified in the three-person identification process.

Database and Analysis

Lab notes from the identification process are hand imputed into an electronic spreadsheet for

analysis of data and local weather data. The method to find and verify the significance of weather data as well as each fly group is the correlation coefficient. Data calculation was done in Excel 2016 for the data to be consistent with prior work on the ICFOD project.

Results

Identification data

The results showed out of seven species of calliphorid fly of interest, there were three species that filled most of the data. These three species listed at highest to lowest is *Phormia regina* at 2447 specimens identified, *Lucilia illustris* at 989 specimens identified, and *Lucilia coeruleviridis* at 563 specimens identified. Of the three only *Phormia regina* data showed bivoltism in population fluctuation (Figure 1). *Lucilia illustris* and *Lucilia coeruleviridis* shows univoltism in late summer (June - September) in comparison (Figure 2, Figure 3).

Analysis

There was no significant correlation between precipitation and the flies with negative correlation coefficient results. Negative correlation coefficient results pointing to weak relationships between variables when compared (Table 1-3). Similarly, high temperature data also showed negative correlation data between the flies, however low temperature data had one positive correlation between *Phormia regina* and minimum temperature with a P-value of .00701, which is significant at P < .05 (Table 2).

Discussion

The results show a skew within the data when it comes to the Luciliinae. This is especially the case with *Lucilia illustris* in which the data shows a staggering spike in population during a period that is not preferential temperature for the species (Wang 2016). Looking back on prior data in the electronic spreadsheet, the older identifications listed before this experiment began does not differenciate the Lucilinae from other genera such as *Lucilia coeruleiviridis*, *Lucilia sericata*, and *Lucilia silvarum*. With a high certainty the identifications of older data will likely need to be reexamined to be consistent with current taxonomical standards. Other obstacles that arose during the analysis of the data was the issue of non-SI units being given for not only the weather data but also the information on the biological cycle of the calliphorids.

The data does suggest that low temperatures do affect Phormia regina, a less cold tolerant species of calliphorid. This aligns with greater confirmation of developmental data from other research (Byrd 2001). Prospects for this data are the usage of occurrence data analysis of calliphorids in various regions of the United States as a stepping stone. The importance of larger occurrence maps in forensics is to have detailed reports of the minimum post-mortem interval for death cases.

Overall, this experiment will need replication and more annual data identified to give more accurate data as to the exact dates of emergence and disappearance of the calliphorid flies. Modifications that would need to be done is the identification system currently is being updated and will continue to do so, thus a plan for reassessment every few years should be necessary for upkeep of the collection

Figure 2. Cluster graph of *L. illustris* occurrence over 2014 and 2015.

Figure 3. Cluster graph of *L. coeruleiviridis* occurrence over 2014 and 2015.

Figure 4. Precipitation data over 2014 to 2015 data.

Figure 5. Temperature variation of 2014 and 2015 data range.

Regina (X)	Precipitat	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
408	0.01	279.211	-0.081	77958.52	0.007	-22.631	-0.11693	19	0.653942
488	0.3	359.211	0.209	129032.2	0.044	75.056			
65	0	-63.789	-0.091	4069.097	0.008	5.808			
9	0	-119.789	-0.091	14349.52	0.008	10.907			
297	0	168.211	-0.091	28294.78	0.008	-15.316			
111	0	-17.789	-0.091	316.465	0.008	1.62			
7	0.02	-121.789	-0.071	14832.68	0.005	8.653			
5	0	-123.789	-0.091	15323.83	0.008	11.271			
68	0	-60.789	-0.091	3695.36	0.008	5.535			
0	0.84	-128.789	0.749	16586.73	0.561	-96.457			
56	0	-72.789	-0.091	5298.307	0.008	6.628			
10	0	-118.789	-0.091	14110.94	0.008	10.816			
0	0.56	-128.789	0.469	16586.73	0.22	-60.395			
288	0	159.211	-0.091	25347.99	0.008	-14.497			
135	0	6.211	-0.091	38.571	0.008	-0.565			
96	0	-32.789	-0.091	1075.15	0.008	2.986			
116	0	-12.789	-0.091	163.571	0.008	1.165			
16	0	-112.789	-0.091	12721.47	0.008	10.27			
272	0	143.211	-0.091	20509.26	0.008	-13.04			
2447	1.73	128.789	0.091	400311.2	0.952	-72.186			
Illustris (X	Precipitat	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
165	0.01	112.947	-0.081	12757.11	0.007	-9.155	-0.1111	19	0.650986
39	0.3	-13.053	0.209	170.371	0.044	-2.727			
5	0	-47.053	-0.091	2213.95	0.008	4.284			
57	0	4.947	-0.091	24.476	0.008	-0.45			
29	0	-23.053	-0.091	531.424	0.008	2.099			
1	0	-51.053	-0.091	2606.371	0.008	4.648			
1	0.02	-51.053	-0.071	2606.371	0.005	3.627			
0	0	-52.053	-0.091	2709.476	0.008	4.74			
6	0	-46.053	-0.091	2120.845	0.008	4.193			
30	0.84	-22.053	0.749	486.319	0.561	-16.516			
30	0	-22.053	-0.091	486.319	0.008	2.008			
80	0	27.947	-0.091	781.055	0.008	-2.545			
2	0.56	-50.053	0.469	2505.266	0.22	-23.472			
471	0	418.947	-0.091	175516.9	0.008	-38.146			
6	0	-46.053	-0.091	2120.845	0.008	4.193			
0	0	-52.053	-0.091	2709.476	0.008	4.74			
1	0	-51.053	-0.091	2606.371	0.008	4.648			
0	0	-52.053	-0.091	2709.476	0.008	4.74			
66	0	13.947	-0.091	194.529	0.008	-1.27			
989	1.73	52.053	0.091	215856.9	0.952	-50.361			
Coerule. (Precipitat	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
3	3	-26.632	-0.081	709.241	0.007	2.159	-0.1664	19	0.497017
18	18	-11.632	0.209	135.294	0.044	-2.43			
44	44	14.368	-0.091	206.452	0.008	-1.308			
0	0	-29.632	-0.091	878.03	0.008	2.698			
289	289	259.368	-0.091	67271.98	0.008	-23.616			
0	0	-29.632	-0.091	878.03	0.008	2.698			
0	0	-29.632	-0.071	878.03	0.005	2.105			
2	2	-27.632	-0.091	763.504	0.008	2.516			
12	12	-17.632	-0.091	310.873	0.008	1.605			
0	0	-29.632	0.749	878.03	0.561	-22.192			
0	0	-29.632	-0.091	878.03	0.008	2.698			
0	0	-29.632	-0.091	878.03	0.008	2.698			
0	0	-29.632	0.469	878.03	0.22	-13.896			
1	1	-28.632	-0.091	819.767	0.008	2.607			
25	25	-4.632	-0.091	21.452	0.008	0.422			
13	13	-16.632	-0.091	276.609	0.008	1.514			
65	65	35.368	-0.091	1250.925	0.008	-3.22			
71	71	41.368	-0.091	1711.346	0.008	-3.767			
20	20	-9.63	-0.091	92.767	0.008	0.877			
563	1.73	29.632	0.091	79716.42	0.952	-45.833			

Table 2. Table deicting correlation coefficient with minimum temperatures vs species.

Regina (X)	Low Temp	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
408	63	279.211	3.789	77958.52	14.36	1058.061	0.5966	19	0.007082
488	68	359.211	8.789	129032.2	77.255	3157.271			
65	59	-63.789	-0.211	4069.097	0.044	13.429			
9	60	-119.789	0.789	14349.52	0.623	-94.571			
297	64	168.211	4.789	28294.78	22.939	805.64			
111	56	-17.789	-3.211	316.465	10.307	57.114			
7	60	-121.789	0.789	14832.68	0.623	-96.15			
5	46	-123.789	-13.211	15323.83	174.518	1635.324			
68	66	-60.789	6.789	3695.36	46.097	-412.729			
0	61	-128.789	1.789	16586.73	3.202	-230.465			
56	59	-72.789	-0.211	5298.307	0.044	15.324			
10	56	-118.789	-3.211	14110.94	10.307	381.377			
0	51	-128.789	-8.211	16586.73	67.413	1057.429			
288	60	159.211	0.789	25347.99	0.623	125.693			
135	56	6.211	-3.211	38.5/1	10.307	-19.939			
96	64	-32.789	4.789	10/5.15	22.939	-157.044			
116	55	-12.789	-4.211	163.5/1	17.729	53.85			
16	55	-112.789	-4.211	12/21.4/	17.729	474.903			
2/2	66	143.211	6.789	20509.26	46.097	972.324			
2447	1125	128.789	59.211	400311.2	543.158	8796.842			
Illustric (V	Low Toma	V NA	V NA	(V 14)42	()/ 14/42	(V NA)/V NA)	D value	N	D value
165	Low Temp	112 047	1-IVI 2 700	(X-IVI)^2	(1-IVI)^Z	(X-IVI)(Y-IVI)	K-Value	10	
20	69	-12.947	5.769 9.790	170 271	77 255	420.011	0.1025	19	0.500259
59	00 E0	-13.033	0.709	2212.05	0.044	-114.720			
57	59	-47.035	-0.211	2215.95	0.044	3,900			
20	64	-23 053	1 789	531 // 2/	22 030	-110 /1			
1	56	-23.055	-3 211	2606 371	10 307	163 906			
1	60	-51 053	0 789	2606 371	0.623	-40 305			
0	46	-52 053	-13 211	2709 476	174 518	687 643			
6	66	-46.053	6.789	2120.845	46.097	-312.673			
30	61	-22.053	1,789	486.319	3,202	-39,463			
30	59	-22.053	-0.211	486.319	0.044	4,643			
80	56	27.947	-3.211	781.055	10.307	-89.726			
2	51	-50.053	-8.211	2505.266	67.413	410.958			
471	60	418.947	0.789	175516.9	0.623	330.748			
6	56	-46.053	-3.211	2120.845	10.307	147.853			
0	64	-52.053	4.789	2709.476	22.939	-249.305			
1	55	-51.053	-4.211	2606.371	17.729	214.958			
0	55	-52.053	-4.211	2709.476	17.729	219.169			
66	66	13.947	6.789	194.529	46.097	94.695			
989	1125	52.053	59.211	215856.9	543.158	1759.789			
Coerule. (Low Temp	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	Ν	P-value
3	63	-26.632	3.789	709.241	14.36	-100.92	0.1741	19	0.475947
18	68	-11.632	8.789	135.294	77.255	-102.235			
44	59	14.368	-0.211	206.452	0.044	-3.025			
0	60	-29.632	0.789	878.03	0.623	-23.393			
289	64	259.368	4.789	67271.98	22.939	1242.238			
0	56	-29.632	-3.211	878.03	10.307	95.133			
0	60	-29.632	0.789	878.03	0.623	-23.393			
2	46	-27.632	-13.211	763.504	174.518	365.028			
12	66	-17.632	6.789	310.873	46.097	-119.709			
0	61	-29.632	1.789	878.03	3.202	-53.025			
0	59	-29.632	-0.211	878.03	0.044	6.238			
0	56	-29.632	-3.211	878.03	10.307	95.133			
0	51	-29.632	-8.211	878.03	67.413	243.291			
1	60	-28.632	0.789	819.767	0.623	-22.604			
25	56	-4.632	-3.211	21.452	10.307	14.87			
13	64	-16.632	4.789	276.609	22.939	-79.657			
65	55	35.368	-4.211	1250.925	17.729	-148.92			
71	55	41.368	-4.211	1/11.346	17.729	-1/4.183			
20	66	-9.632	6.789	92.767	46.097	-65.393			
563	1125	29.632	59.211	79716.42	543.158	1145.474			

Table 3. Table depicting correlation coefficient between high temperture and species.

Regina (X)	High Tem	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
408	79	279.211	-1.158	77958.52	1.341	-323.296	0.2442	19	0.313675
488	77	359.211	-3.158	129032.2	9.972	-1134.35			
65	78	-63.789	-2.158	4069.097	4.657	137.651			
9	82	-119.789	1.842	14349.52	3.393	-220.665			
297	85	168.211	4.842	28294.78	23.446	814.493			
111	85	-17.789	4.842	316.465	23.446	-86.139			
7	78	-121.789	-2.158	14832.68	4.657	262,809			
5	74	-123 789	-6 158	15323.83	37 92	762 283			
68	۲, ۵۵	-60 789	8 842	3695 36	78 183	-537 507			
00	77	-128 780	-2 159	16586 72	0.105	406 704			
U	יי רד	-120.709	-3.130	E200 207	0.072	220.961			
10	77	-72.709	-5.150	14110.04	9.972	612 704			
10	/5	-118.789	-5.158	14110.94	26.604	612.704			
0	50	-128.789	-14.158	10580.73	200.446	1823.388			
288	/9	159.211	-1.158	25347.99	1.341	-184.349			
135	80	6.211	-0.158	38.5/1	0.025	-0.981			
96	86	-32.789	5.842	1075.15	34.13	-191.56			
116	82	-12.789	1.842	163.571	3.393	-23.56			
16	82	-112.789	1.842	12721.47	3.393	-207.77			
272	92	143.211	11.842	20509.26	140.235	1695.914			
2447	1523	128.789	80.158	400311.2	616.526	3835.632			
Illustris (X	High Tem	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
165	79	112.947	-1.158	12757.11	1.341	-130.781	-0.0362	19	0.883674
39	77	-13.053	-3.158	170.371	9.972	41.219			
5	78	-47.053	-2.158	2213.95	4.657	101.535			
57	82	4.947	1.842	24.476	3.393	9.114			
29	85	-23.053	4.842	531.424	23.446	-111.623			
1	85	-51.053	4.842	2606.371	23.446	-247.202			
1	78	-51.053	-2.158	2606.371	4.657	110.166			
0	74	-52.053	-6.158	2709.476	37.92	320,535			
6	89	-46 053	8 842	2120 845	78 183	-407 202			
30	77	-22 053	-3 158	486 319	9 972	69.64			
20	77	-22.055	-2 150	496 210	0 072	69.64			
20	77	22.033	-3.130	701 000	26 604	144.15			
00	75	27.947	-5.150	761.055	20.004	-144.15			
471	70	-50.055	-14.158	2505.200	200.440	708.04			
4/1	/9	418.947	-1.158	1/5516.9	1.341	-485.097			
6	80	-46.053	-0.158	2120.845	0.025	7.271			
0	86	-52.053	5.842	2/09.4/6	34.13	-304.097			
1	82	-51.053	1.842	2606.371	3.393	-94.044			
0	82	-52.053	1.842	2709.476	3.393	-95.886			
66	92	13.947	11.842	194.529	140.235	165.166			
989	1523	52.053	80.158	215856.9	616.526	-417.158			
Coerule. (High Tem	X-M	Y-M	(X-M)^2	(Y-M)^2	(X-M)(Y-M)	R-value	N	P-value
3	79	-26.632	-1.158	709.241	1.341	30.837	0.2705	19	0.262681
18	77	-11.632	-3.158	135.294	9.972	36.731			
44	78	14.368	-2.158	206.452	4.657	-31.006			
0	82	-29.632	1.842	878.03	3.393	-54.584			
289	85	259.368	4.842	67271.98	23.446	1255.889			
0	85	-29.632	4.842	878.03	23.446	-143.479			
0	78	-29.632	-2.158	878.03	4.657	63.942			
2	74	-27,632	-6.158	763 504	37 92	170.152			
12	, 4 20	-17 632	2 2/17	310 972	78 192	-155 0			
		-20 622	_2 150	\$10.073 \$79 AP	, 0.105 0 072	92 572			
0	// רר	-29.032	-3.138	070.03	5.572	00 ETO			
0		-29.032	-3.158	070.03	9.972	95.5/5			
0	/5	-29.632	-5.158	8/8.03	26.604	152.837			
0	66	-29.632	-14.158	878.03	200.446	419.521			
1	79	-28.632	-1.158	819.767	1.341	33.152			
25	80	-4.632	-0.158	21.452	0.025	0.731			
13	86	-16.632	5.842	276.609	34.13	-97.163			
65	82	35.368	1.842	1250.925	3.393	65.152			
71	82	41.368	1.842	1711.346	3.393	76.205			
20	92	-9.632	11.842	92.767	140.235	-114.058			
563	1523	29.632	80.158	79716.42	616.526	1896.105			
						1			

References Cited

- **Bunchu, Nophawan. "Blow Fly (Diptera: Calliphoridae) In Thailand: Distribution, Morphological Identification And Medical Importance Appraisals."** *International Journal of Parasitology Research*4, no. 1 (2012): 57-64. doi:10.9735/0975-3702.4.1.57-64.
- Byrd, Jason H., and Jon C. Allen. "The Development of the Black Blow Fly, Phormia Regina (Meigen)." Forensic Science International120, no. 1-2 (2001): 79-88. doi:10.1016/s0379-0738(01)00431-5.
- Capinera, John; Heath, Allen. "Cluster Fly, Pollenia rudis (Fabricius) and P. pseudorudis Rognes (Diptera: Calliphoridae) "Encyclopedia of Entomology: Springer Science+Business Media B.V. 2008. pg 932-935
- Kosmann, Cecília, Rubens Pinto De Mello, Érica Sevilha Harterreiten-Souza, and José Roberto Pujol-Luz. "A List of Current Valid Blow Fly Names (Diptera: Calliphoridae) in the Americas South of Mexico with Key to the Brazilian Species." EntomoBrasilis 6, no. 1 (2013): 74-85. doi:10.12741/ebrasilis.v6i1.266.
- Mohr, Rachel M., and Jeffery K. Tomberlin. "Development and Validation of a New Technique for Estimating a Minimum Postmortem Interval Using Adult Blow fly (Diptera: Calliphoridae) Carcass Attendance." International Journal of Legal Medicine129, no. 4 (2014): 851-59. doi:10.1007/s00414-014-1094-x.
- Stamper, Trevor. ICFOD data from Purdue University Forensics Lab.
- Velásquez, Yelitza, Ana Isabel Martínez-Sánchez, Arianna Thomas, and Santos Rojo. "Checklist and Distribution Maps of the Blow Flies of Venezuela (Diptera, Calliphoridae, Mesembrinellidae)." ZooKeys645 (2017): 103-32. doi:10.3897/zookeys.645.6972.
- Wang, Yu, Liang-Liang Li, Jiang-Feng Wang, Min Wang, Li-Jun Yang, Lu-Yang Tao, Ying-Na Zhang, Yi-Ding Hou, Jun Chu, and Zai-Lin Hou. "Development of the Green Bottle Fly Lucilia Illustris at Constant Temperatures." Forensic Science International267 (2016): 136-44. doi:10.1016/j.forsciint.2016.07.019.