AGEC 528
Global Change and the Challenge of Sustainably Feeding a Growing Planet
(CRN 10441)

An interdisciplinary course at Purdue University

Offered by Thomas W. Hertel
Department of Agricultural Economics

Spring Semester, 2017

Tuesday/Thursday: 10:30 – 11:45am, KRAN G-7

Teaching Assistant: Iman Haqiqi
Motivation

Over the past decade, there has been a convergence of interest in the global farm and food system and its contributions to feeding the world’s population as well as to ensuring the environmental sustainability of the planet. This has underscored the vulnerability of the global food system to shocks from extreme weather events, energy and financial markets, as well as government interventions in the form of export bans and other measures designed to avoid domestic adjustment to global scarcity. We have learned that a “perfect storm” in which all these factors coincide can have a severe impact on the world’s poor, as well as putting considerable pressure on the global natural resource base. As we look ahead to the middle of this century, will the world’s resources be up to the task of meeting the diverse demands being placed on it? What will be the environmental impact of such demands?

The number of people which the world must feed is expected to increase by another 2 billion by 2050. When coupled with significant nutritional improvements for the 2.1 billion people currently living on less than $2/day, this translates into a very substantial rise in the demand for agricultural production. Over the past century, global agriculture has managed to offer a growing population an improved diet, primarily by increasing productivity on existing cropland. Can this feat be repeated in the next forty years? There are recent signs of slowing yield growth for key staple crops and public opposition to genetically modified crops has slowed growth in the application of promising biotechnology developments to food production in some parts of the world. In addition, the IPCC foresees climate change becomes a significant drag on future productivity growth. In this context, the use of biomass for energy generation has contributed to concerns about future food scarcity. To compound matters, water, a key input into agricultural production, is becoming increasingly scarce in many parts of the world. Since irrigated agriculture accounts for 70% of all freshwater withdrawals worldwide and about 40% of world agricultural output, such water scarcity is likely to impinge on global food availability and cost.

In addition, agriculture and forestry are increasingly envisioned as key sectors for climate change mitigation policy – offering low cost, near term abatement of greenhouse gas emissions. Yet any serious attempt to curtail these agricultural emissions will involve changes in the way farming is conducted, as well as placing limits on the expansion of farming – particularly in the tropics, where most of the agricultural land conversion has come at the expense of forests. Limiting the conversion of forests to agricultural lands is also critical to preserving the planet’s biodiversity. These factors will restrict the potential for agricultural expansion.

In light of these challenges facing the world’s natural resource base, this course will explore the fundamental drivers behind drivers of change in the global food system and the interactions with environmental and food security over the first half of this century.

Textbook (e-book is free for Purdue Students via Purdue Libraries)

http://link.springer.com/book/10.1007%2F978-3-319-22662-0

Format for the class

This is a 3 credit class, meeting twice a week for a full semester. The first meeting of each week will introduce a new dimension of global land use, food and environmental security. We will kick off the week’s activities with a guest lecture, followed by student-led discussion of the week’s readings. The second meeting of each week will emphasize the economics underpinning how this particular dimension of the problem affects the global food system, resource use,
environmental quality and nutritional outcomes. This will be motivated by the lab assignments which students undertake. The lab assignments are based on the SIMPLE economic model of global agriculture (a Simplified International Model of agricultural Prices, Land use and the Environment). These assignments will allow students to obtain a hands-on assessment of the relative importance of the different forces bearing on the long run supply and demand for food and land resources, key economic mechanisms mediating these adjustments, and the implications for food security and the environment. The capstone event in this course is the student project, which will involve the application of SIMPLE to a problem of the student’s choosing. (See the end of this syllabus for a partial listing of previous topics.)

The structure of each week’s module will be as follows:

First meeting of each week (10:30 am - 11:45 am: Tuesday; Krannert G-7)
1) 45 minute presentation on the weekly topic led by a faculty member
2) 30 minute student-led discussion of the week’s readings

Second meeting of each week (10:30 am - 11:45 am: Thursday; Krannert G-7)
1) 30 minute presentation on the economic dimensions of the topic
2) 45 minute discussion of the lab assignment and application to the week’s topic

Prerequisites
This is an interdisciplinary course. As such, there are few prerequisites. A prior course in economics will ensure an understanding of the basic aspects of supply, demand and economic equilibrium. A solid grasp of mathematics up to and including differential calculus is also essential to understand the labs. Prior experience with mathematical modeling is also a plus.

Grading
Grades will be based on three factors: lab assignments (50%), the quality of student led discussions of readings (15%: students will be asked to submit two discussion questions in advance of Tuesday’s lecture, each week), and the final project (35%), which will be the focal point of the second half of the semester. There is no exam in this course.

Office hours
Tom Hertel: Thursday, 3 – 4pm, Krannert 647 or by appointment (Email: hertel@purdue.edu)
Iman Haqiqi: Tuesday, TBD, Krannert 638 or by appointment (Email:ihaqiqi@purdue.edu)

Academic integrity
Academic integrity is one of the highest values that Purdue University holds. Individuals are encouraged to alert university officials to potential breeches of this value by either emailing integrity@purdue.edu or by calling 765-494-8778. While information may be submitted anonymously, the more information that is submitted provides the greatest opportunity for the university to investigate the concern.
Week 1: Overview: Jan. 10 - Lecture by Tom Hertel

During this week we will obtain an overview of the issues involved in the long run evolution of agriculture and the challenges of sustainably feeding the world’s growing population. In addition to a descriptive, historical perspective on the issue, we will lay out a stylized, analytical framework which highlights the economic mechanisms at work.

Required Readings:

Text: Chapter 1: “Overview of Global Land Use, Food Security and the Environment”

Lab Discussion: Introduction to the modelling software and overview on how to run and analyze the experiments using SIMPLE

Week 2: Population growth and global food demand: Jan. 17 Guest Lecture by Stephen Warren, Professor of Atmospheric Sciences, University of Washington

During this week we will examine the impact of population and income growth on long run food demand. This debate traces its roots back to the classic publication by Thomas Malthus in 1888 in which he predicted that population would win the footrace between supply and demand for food. As population growth has slowed, the relative importance of dietary upgrading has increased. This is driven by rising per capita incomes. However, these richer diets are much more land-intensive, hence putting additional pressure on the global resource base. When scarcity arises, it is typically the low income households which experience significant reductions in food consumption in response to rising price. This response is important from the point of view of nutrition as well as the manner in which global supply and demand are balanced in the face of a limited resource base.

Required Readings:

Textbook: Chapter 2: “Population and Income as Drivers of Global Change”
Lab Assignment 1: Simulate the impact on global and regional food demand in 2050 of varying population growth assumptions and the income responsiveness of demand for food.

Week 3: Yield Growth and Yield Gaps: Jan. 24 Guest Lecture by Mitch Tuinstra, Professor of Agronomy and Wickersham Chair of Excellence and Scientific Director, Plant Science and Education Pipeline

Over the past 50 years, three-quarters of agricultural output growth came from higher yields. Can this success story be repeated in the next 50 years? There are signs that yield growth is slowing significantly for some key crops. Is this due to underinvestment in technology? Or perhaps prices? Or is it due to approaching bio-physical limits? Another constraint will be the increasing attention being paid to nitrogen fertilizer runoff and its adverse environmental consequences. We also examine why yields are still so low in much of the world, and what it might take to allow farmers to close these yield gaps.

Required Readings:

Textbook: Chapter 3: Sections 3.1-3.2: “Productivity Growth and Yields in the Global Crops Sector”

Lab Discussion: Examine the combined impact of population growth, income growth and biofuels on global land use in the context of supply response.

Week 4: Water Quantity and Quality: Constraints and Opportunities; Jan. 31, Guest Lecture by Ron Turco, Professor of Agronomy and Director, Purdue Global Sustainability Institute

Presently two-fifths of global crop production comes from irrigated areas which, combined, account for just one-fifth of total crop land. This is a reflection of the very high productivity of irrigated agriculture. However, this irrigation activity accounts for 70% of freshwater withdrawals, and projections indicate that 50% of global river basins will be experiencing severe shortages in twenty years’ time. This will inevitably translate into water scarcity and ultimately to reductions in the water available for farming. Thus water will be an increasingly key limiting factor for agricultural production in the coming decades.

Required Readings:

Text: Chapter 5: “Water, Food and Environmental Security”

Lab Discussion: Analyzing the impacts of constraints in irrigated agricultural production to the global farm and food system

Lab Assignment 2: Simulate the impact of International Energy Agency projections of biofuels growth to 2035 under varying assumptions about the price responsiveness of the extensive and demand margins of economic behavior.

Week 5: Supply response: Potential for Cropland expansion, Feb. 7

Lecture by Tom Hertel

Absent sufficiently rapid yield growth, expansion at the extensive margin is inevitable. Many authors have asked the question: How much land is available for cropland expansion? And how productive is this land? If it is available, why is it not presently farmed? We will examine this issue. Ultimately cropland expansion will depend on the underlying economic forces – in particular the returns to land used in farming.

Required Readings:

Textbook: Chapter 4: “Economic Response to Scarcity”

Lab Assignment 3: Examine the combined impact of population growth, income growth and biofuels on global land use in the context of supply response at the intensive margin.

Analytical Framework

Textbook Appendix B: “Analytical Framework: A Theoretical Model of Long Run Demand and Supply for Agricultural Land”

Week 6: Climate Change as a factor influencing global agriculture:

Feb. 14 - Guest lecture by Matt Huber, Professor of Earth and Atmospheric Sciences

The question of meeting global food, fiber and fuel demands in 2050 is greatly complicated by the prospect of climate change which is likely to alter temperature and precipitation as well as the frequency and intensity of extreme events. How will climate change affect land use? This
will depend not only on the absolute impacts, but also on the relative impacts – the changes in comparative advantage of competing land using activities across regions of the world.

Required Readings:

Choose one of the first two readings, along with the third:

Textbook: Chapter 6: “Climate Change Impacts in Agriculture”

Lab Assignment 4: Examine the impact of climate change on crop productivity, global land use and agricultural prices.

Week 7: Understanding the livestock sector and its role in translating changes in consumption patterns into land use, February 21: Guest Lecture by Farzad Taheripour, Research Associate Professor, Department of Agricultural Economics

The modern food system has reshaped consumption patterns around the globe. Growth in consumption and production of livestock products has been a key feature of this new economic geography of the food system. The most rapid increase in consumption of livestock products has been in developing countries. Much of this growth has been fueled by an intensification of livestock production. This sector has also become a major consumer of biofuel byproducts. This week we will examine how these factors combine to alter the demand for global cropland in the long run.

Required Readings:

Text: Chapter 9: “Livestock and Processed Foods”

Lab Discussion: Examine the impact of changes in livestock and food processing in different parts of the world on global land use.
Week 8: Total Factor Productivity Growth in the Agricultural System, Feb. 28 - Lecture by Uris Baldos, Research Asst. Prof., Department of Agricultural Economics

Crop yield is a partial measure of productivity as it only reflects growth in output per unit of land input. To assess the overall changes in productivity in the agricultural sector, economists rely on total factor productivity (TFP) which takes into account all inputs used in production. During this week, we will explore the historical trends in agricultural TFP growth, its drivers, how changes in TFP affect consumers and producers and the implications of TFP growth on cropland use.

Required Readings:

Textbook: Chapter 3: Sections 3.3-3.4: “Productivity Growth and Yields in the Global Crops Sector”

Lab Assignment 5: Examine the impact of changes in exogenous partial and total factor productivity growth rates in crops in different parts of the world on global land use.

Week 9: Post-Harvest Losses, March 7 – Guest Lecture by Jacob Ricker-Gilbert, Associate Professor of Agricultural Economics

So far we have focused on the global dimensions of supply and demand. These are propagated throughout all the regions of the world, but their effects are modulated by regional differences in trade policies and the regulatory environment, including restrictions on water quality, use of GMO’s, protection of native ecosystems, etc. In this week we will examine how these policies have been changing and what this means for global land use, and also how regulations will act to shape future land use.

Required Readings:

Lab Discussion: Wrap up discussion of productivity growth and sustainability

SPRING BREAK
Week 10: Food Waste and Sustainability in the Food System, March 21 – Guest Lecture by Bhagyashree Katare, Assistant Professor of Agricultural Economics

So far we have focused on the global dimensions of supply and demand. These are propagated throughout all the regions of the world, but their effects are modulated by regional differences in trade policies and the regulatory environment, including restrictions on water quality, use of GMO’s, protection of native ecosystems, etc. In this week we will examine how these policies have been changing and what this means for global land use, and also how regulations will act to shape future land use.

Required Readings:

Lab Discussion: Impact of reducing food waste on global food and environmental security. Start working on class project

Week 11: Biodiversity and other Non-market, Land-based Eco-system Services, March 28, Jeff Holland, Associate Professor of Entomology

Thus far we have treated the ecosystem in a very simplistic fashion, with the main eco-system service provided by land being food production. However, there are many other services provided by terrestrial ecosystems – some of which benefit agricultural production and some of which have non-production values. In this week, we explore some of these other services – focusing especially on those which interact with agricultural production.

Required Readings:

Text: Chapter 7, Sections 7.1, 7.3, 7.4: “Land-based Environmental Services"
Lab Discussion: Additional analysis of land supply shocks due to competing demands for ecosystem services. **Continue working on class project**

Week 12: Nutrition and Food Security: April 4 - Guest Lecture by Gerald Shively, Professor of Agricultural Economics

Nutrition and food security are closely linked to developments in the agricultural sector particularly in low income regions. Given this, the impacts of climate change on agriculture will affect the nutritional outcomes at the household level. In this week, we examine the key measures used in quantifying hunger and malnutrition and how these metrics are affected by climate change and by the long run drivers of the global food and farm system.

Required Readings:

Textbook: Chapter 10: “Food Security and Nutrition”

Lab Assignment 6: Examine the nutritional implications of climate change and the drivers of global agriculture.

Economic Modeling Framework

Week 13: Land-Based Climate Mitigation Policies, April 11 - Lecture by Tom Hertel

Most land management policies aimed at curbing GHG emissions and mitigating the effects of climate change are directed toward restoring and preserving natural forests. However, these policies will have unintended consequences on the availability of farmlands in the future. Some studies also point out the potential for GHG mitigation in the agricultural sector by reverting current croplands to its natural land cover. During this week, we will explore the effect of these land-based climate mitigation policies on global crop production and food prices.

Brent Sohngen, “An Analysis of Forestry Carbon Sequestration as a Response to Climate Change” (*Copenhagen Consensus on Climate*, 2010)

Text: Chapter 7, Sections 7.2, 7.5: “Land-based Environmental Services”

Lab Discussion: Examine the impact of land use change on GHG emissions. Explore exogenous shifts in the supply of land to agriculture in response to climate mitigation policies. Continue working on class project

Week 14: Globalization, and the scope for feeding the world sustainably in 2050, April 18 – Lecture by Uris Baldos, Research Asst. Prof., Dept. of Agricultural Economics

This course has surveyed the major drivers of land supply and demand and how they are studied. In this week we will attempt to synthesize the strengths and weaknesses of different research approaches and identify promising new directions for better understanding the future global food, land and environmental systems.

Required Readings:

Text: Chapter 11: “Global Change and the Food System in 2050”

Lab Discussion: Incorporate projected growth in the key drivers of global agriculture and discuss the range of future growth in crop production, cropland use and crop price. Finalize class project

Week 15: Presentation of Class Projects, April 25 and 27

Each individual will briefly present highlights from their class project, with time for Q&A with the rest of the class. A menu of project ideas from previous years follows. This is indicative of the type of question which can be readily explored in the context of the SIMPLE modeling framework developed over the course of the semester.
Ideas for Class Projects
(These are based on past class projects. We expect that many more ideas will emerge from our discussions during class):

1. **Food Waste and Post-Harvest Losses:** The UN-FAO estimates that one-third of global food production is lost or wasted so that only two-thirds of production is actually consumed. What are the implications of such losses for crop prices? How would a reduction in post-harvest losses affect nutritional outcomes?

2. **Changing Nutrition Guidelines:** The USDA is in the process of formulating a new set of nutrition guidelines. For the first time they are considering adding environmental impacts to these guidelines. How would such considerations change the pattern of food consumption? How would changing consumption patterns alter the pattern of global land use and GHG emissions?

3. **Empowerment of Women: Implications for Global Food Security:** Women comprise a large share of the agricultural labor force and female-headed farms represent a large share of agricultural enterprises worldwide. Women are also key decision makers when it comes to household nutrition and fertility. As such, they are in a unique position to influence local, regional and global food security outcomes. However, lack of education and limited access to credit and other inputs currently limit the impact which women can have on these outcomes. How would greater empowerment of women change the global food security landscape?

4. **Migration and Global Food Security:** The migration of individuals across national borders is a global phenomenon which is currently on the rise. It affects the supply of, and the demand for, food. What is the net impact on global food security of trends in international migration?

5. **Virtual Trade in Water:** Scientists have recently identified ‘virtual trade in water’ as an important element of the global sustainability puzzle. Virtual water exports arise when one country exports water intensive goods to another country. The water embodied in the production of this commodity for export is termed ‘virtual water’ and recent studies have documented the extent of such ‘trade’. In light of the trends in population, income, productivity and biofuels alter virtual water trade between the present day and 2050?

6. **Constraints in irrigated agriculture:** Almost 40% of the world crop production is coming from irrigated lands. However, growing scarcity of water threatens to limit the potential of irrigated agricultural production to feed the world. Excessive water withdrawals also threaten to increase soil salinity and soil productivity. What are the potential impacts of constraints in irrigated agriculture on the global farm and food system?

7. **Africa as the Sleeping Giant of Agriculture:** In 2009, the World Bank published a report suggesting that the Guinea Savannah Zone of Africa could become the next breadbasket for the world. What would be the implications of such a development?

8. **Urbanization:** In one of our lab discussions, we explored urbanization’s impacts on demand for land. However, one could dig deeper by looking at the quality of land that is being displaced. What are the implications for global land use, food security and the environment.

9. **REDD:** Similar to Urbanization, students could explore the impact of efforts to dedicate additional land to the production of environmental services. This would be implemented through adjustments to the regional conversion factors of land in environmental services to cropland.

10. **Climate change:** We also explored in our lab discussions the impacts of different types of climate shocks on agricultural productivity and land use. A deeper dive might entail
converting existing studies of the impacts of climate change into shocks or parameter adjustments within our own model and exploring the results. Lab four discusses the parameters that could be adjusted to implement this idea.

11. **Jevon’s paradox**: The Angelsen reading discusses Jevon’s paradox - a situation in which yield growth might lead to extensification. A deeper exploration of the conditions under which we might expect such a result would be interesting. What is the demand elasticity required to generate this outcome? How do yield differentials across regions affect the likelihood of this outcome? Can these results tell us anything about the probability of experiencing Jevon’s paradox in the real world?

12. **Impacts of shifting population and income on global demand elasticity**: Regional differences in demographics and income growth will shift the balance of global demand. How do these shifts change the aggregate global demand elasticity? How does this compare to shifting demand elasticities within regions? What impact does this have in moderating/amplifying the extensification impacts of biofuels mandates?

13. **Biophysical/economic interaction**: Relative yields (local yields versus the global maximum) might be indicative of how close a particular region is to the biophysical limits of intensification given current technologies. To understand how such biophysical limits interact with the economics governing the crop market, we might want to consider a linear relationship between relative yields and our intensification parameter. By plotting different regions on this linear relationship, one could determine whether such a biophysical limit, through its impact on the economic parameters, changes the outcomes of crop expansion scenarios.

14. **Impacts of different types of technology growth**: In our model we can simulate land augmenting, land dis-augmenting and technology neutral productivity growth (through afland, afnland or both simultaneously). What are the realistic ranges of these types of productivity growth going forward? If yield growth outpaces non-land technology growth, what would be the impact on prices and extensification? Under different scenarios, does the clear relationship between land prices and extensification begin to break down?

15. **Globalization**: We have spent relatively little time in the labs relating global processes to local outcomes. However, it can be shown analytically that the effective elasticity of demand for a local market depends on the rest of the world’s supply elasticity, the local production’s share of the global market as well as the global demand elasticity. Among other possibilities, an analysis of globalization’s impact might compare the extensification impacts of productivity changes in small markets (share of world supply is small) to large markets.

16. **Changing productivity of livestock and food processing**: We’ve spent a fair amount of time evaluating the impacts of changing agricultural productivity. However, one could also assess the implications of changes in the TFP of livestock production or food processing. Contradictory effects of these downstream productivity changes (less crops required to produce a good, but demand is now increasing) may lead to interesting results depending on the assumed parameter values.

17. **Market mediated responses**: Hertel (2011) highlights the importance of considering economic factors when estimating the land use implications of changes in biofuels demand. A similar analysis could assess to what scale biophysical estimates of the impacts of demand shocks (e.g. population growth, income expansion) are moderated through economic processes such as intensification and demand reduction.

18. **Cost-benefit analysis of productivity growth**: Several papers provide estimates of the cost and scale of historical TFP growth. Using these estimates, one could estimate the consumer surplus generated by the yield growth to evaluate the cost effectiveness. Similarly, estimates of the cost per hectare saved would be possible for land-sparing technologies.
Course Policies

Academic Dishonesty
Purdue prohibits "dishonesty in connection with any University activity. Cheating, plagiarism, or knowingly furnishing false information to the University are examples of dishonesty." [Part 5, Section III-B-2-a, Student Regulations] Furthermore, the University Senate has stipulated that "the commitment of acts of cheating, lying, and deceit in any of their diverse forms (such as the use of substitutes for taking examinations, the use of illegal cribs, plagiarism, and copying during examinations) is dishonest and must not be tolerated. Moreover, knowingly to aid and abet, directly or indirectly, other parties in committing dishonest acts is in itself dishonest." [University Senate Document 72-18, December 15, 1972].

Here is the Purdue’s student guide for academic integrity: https://www.purdue.edu/odos/academic-integrity/

Use of Copyrighted Materials
Students are expected, within the context of the Regulations Governing Student Conduct and other applicable University policies, to act responsibly and ethically by applying the appropriate exception under the Copyright Act to the use of copyrighted works in their activities and studies. The University does not assume legal responsibility for violations of copyright law by students who are not employees of the University.

A Copyrightable Work created by any person subject to this policy primarily to express and preserve scholarship as evidence of academic advancement or academic accomplishment. Such works may include, but are not limited to, scholarly publications, journal articles, research bulletins, monographs, books, plays, poems, musical compositions and other works of artistic imagination, and works of students created in the course of their education, such as exams, projects, theses or dissertations, papers and articles.

Please also refer to the University Regulations on policies: http://www.purdue.edu/policies/academic-research-affairs/ia3.html

Attendance
Students are expected to be present for every meeting of the classes in which they are enrolled. Only the instructor can excuse a student from a course requirement or responsibility. When conflicts or absences can be anticipated, such as for many University sponsored activities and religious observations, the student should inform the instructor of the situation as far in advance as possible…For unanticipated or emergency absences when advance notification to an instructor is not possible, the student should contact the instructor as soon as possible by email, or by contacting the main office that offers the course. When the student is unable to make direct contact with the instructor and is unable to leave word with the instructor’s department because of circumstances beyond the student’s control, and in cases of bereavement, the student or the student’s representative should contact the Office of the Dean of Students. The link to the complete policy and implications can be found at: http://www.purdue.edu/studentregulations/regulations_procedures/classes.html

Grief Absence Policy for Students
Purdue University recognizes that a time of bereavement is very difficult for a student. The University therefore provides the following rights to students facing the loss of a family member
through the Grief Absence Policy for Students (GAPS). GAPS Policy: Students will be excused for funeral leave and given the opportunity to earn equivalent credit and to demonstrate evidence of meeting the learning outcomes for misses assignments or assessments in the event of the death of a member of the student’s family.

See the University’s website for additional information: http://www.purdue.edu/studentregulations/regulations_procedures/classes.html

Violent Behavior Policy

Purdue University is committed to providing a safe and secure campus environment for members of the university community. Purdue strives to create an educational environment for students and a work environment for employees that promote educational and career goals. Violent Behavior impedes such goals. Therefore, Violent Behavior is prohibited in or on any University Facility or while participating in any university activity.

See the University’s website for additional information: http://www.purdue.edu/policies/facilities-safety/iva3.html

Emergencies

In the event of a major campus emergency, course requirements, deadlines and grading percentages are subject to changes that may be necessitated by a revised semester calendar or other circumstances beyond the instructor’s control. Relevant changes to this course will be posted onto the course website or can be obtained by contacting the instructors or TAs via email or phone. You are expected to read your @purdue.edu email on a frequent basis.

See the University’s website for additional information: https://www.purdue.edu/ehps/emergency_preparedness/

Students with Disabilities

Purdue University is committed to maintaining an inclusive community that recognizes and values the inherent worth and dignity of every person; fosters tolerance, sensitivity, understanding and mutual respect among its members; and encourages each individual to strive to reach his or her own potential. In pursuit of its goal of academic excellence, Purdue University seeks to develop and nurture its diversity. The University believes that diversity among its many members strengthens the institution, stimulates creativity, promotes the exchange of ideas and enriches campus life. Purdue University views, evaluates and treats all persons in any university-related activity or circumstance in which they may be involved solely as individuals on the basis of their own personal abilities, qualifications and other relevant characteristics.

Purdue University does not condone and will not tolerate Discrimination against any individual on the basis of race, religion, color, sex, age, national origin or ancestry, genetic information, disability, status as a veteran, marital status, parental status, sexual orientation, gender identity or gender expression. Purdue University promulgates policies and programs to ensure that all persons have equal access to its employment opportunities and educational programs, services and activities. The principal objective of this policy is to provide fair and consistent treatment for all students and employees of the University. Purdue is committed to increasing the recruitment, selection and promotion of faculty and staff at the University who are racial or ethnic minorities, women, persons with disabilities and veterans. The University also is committed to policies and programs that increase the diversity of the student body.

Here are some links that may be relevant:
Nondiscrimination

Purdue University is committed to maintaining a community which recognizes and values the inherent worth and dignity of every person; fosters tolerance, sensitivity, understanding, and mutual respect among its members; and encourages each individual to strive to reach his or her own potential. In pursuit of its goal of academic excellence, the University seeks to develop and nurture diversity. The University believes that diversity among its many members strengthens the institution, stimulates creativity, promotes the exchange of ideas, and enriches campus life.

Purdue University prohibits discrimination against any member of the University community on the basis of race, religion, color, sex, age, national origin or ancestry, genetic information, marital status, parental status, sexual orientation, gender identity and expression, disability, or status as a veteran. The University will conduct its programs, services and activities consistent with applicable federal, state and local laws, regulations and orders and in conformance with the procedures and limitations as set forth in Executive Memorandum No. D-1, which provides specific contractual rights and remedies. Any student who believes they have been discriminated against may visit www.purdue.edu/report-hate to submit a complaint to the Office of Institutional Equity. Information may be reported anonymously.

Here is Purdue’s nondiscrimination statement: http://www.purdue.edu/purdue/ea_eou_statement.html