EMERGING TECHNOLOGIES ON STORED GRAIN MONITORING

Clairomont Clementson, PhD
Research Associate

Klein Ileleji, PhD.
Professor & Extension Engineer
Agricultural and Biological Engineering

GRAIN POST-HARVEST & RECERTIFICATION WORKSHOP
Beck Agricultural Center, West Lafayette, Indiana
December 5, 2019

Presentation Outline

• Need for Grain Monitoring
• Current Grain Monitoring Approaches
• Emerging Grain Monitoring Technologies
Importance of monitoring

An average of 100,000 bu @ $3.68 per bu = $368,000

Maintaining Quality is Job # 1 in Stored Grain Management

Importance of monitoring

- Grain is a biologically active material and therefore it will deteriorate in storage under favorable conditions
- Stored grain quality cannot be improved but maintained.
- Therefore, knowing the history and initial grain quality is an important first step in managing grain in storage

Grain Quality after Storage = F(Ini.Quality, Mgt, ?)

How can we accurately predict this?
The Stored Grain Ecosystem

- Temperature
- Grain moisture & RH
- Solar radiation, precipitation, etc.
- Gases: CO₂ & O₂
- Phy., chem. & biol. controls
- Other plant materials
- Grain
- Insects, mites, rodents, birds
- Contaminants: frass, faeces, etc.
- Mold & Mycotoxins
- Mold & Glue

Molds glue kernels together when grain goes out of condition

The Purdue University Cooperative Extension Service is an equal access/equal opportunity institution.
Hotspot caused by fine accumulation, insect and mold activity at the center of the bin

Poor grain management has been noted as a primary cause of grain entrapment
Importance of monitoring

- Anecdotal evidence suggests that less than 30% of grain bins on U.S. farms have some form of stored grain monitoring technology
- Indiana has been one of the leading states for grain entrapment. Indiana led the nation in 2016 and has recorded 162 entrapments since 1962 (Himler, 2017; Issa et al., 2013)
- With the increase in grain bin sizes for on-farm storage, farmers today are trying to use management principles that they successfully used to manage small grain stocks

Current Monitoring Approaches:

You can’t manage what you don’t know is there
Monitor temperature with temperature cables

It takes a while to detect deterioration and hot spots using temperature cables alone.

Real-time Insect Detection System

As the insect breaks the Infrared beams, its size is registered. At the same time, the time and temperature is captured in the memory on the built-in microprocessor.

Available from: www.opisystems.com
Integris USA, LLC.
Insect monitoring - Pheromone flight trap

CO\textsubscript{2} Monitors – Early Spoilage Detection

CO\textsubscript{2} sensors has been demonstrated (Ileleji et al, 2006) as a reliable and quick method for detecting grain spoilage but effectiveness is weakened by the lack of rigorous data analytics and interpretation.
The Purdue University Cooperative Extension Service is an equal access/equal opportunity institution.

Comparative assessment of current monitoring technologies for stored grain

<table>
<thead>
<tr>
<th>Capability/Company</th>
<th>OPI-Integrity</th>
<th>Tri-state</th>
<th>CSI</th>
<th>TeleSense</th>
<th>Amber Ag</th>
<th>AgriDry LLC</th>
<th>Skyway</th>
<th>Grain Probe*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>OPI Blue</td>
<td>GrainTrac</td>
<td>Grain Viz</td>
<td>Grainsafe</td>
<td>Bullseye</td>
<td>BinSense</td>
<td>GrainPatrol</td>
<td></td>
</tr>
</tbody>
</table>

Current Monitoring Approaches:

Most of the current systems lack adequate and easy to use analytics based on fundamental understanding of stored grain ecosystems for informed decision making.
The Purdue University Cooperative Extension Service is an equal access/equal opportunity institution.

Emerging Technologies

- **Temperature logger**
- **Vents**
- **Temperature/RH Sensor**
- **Fan**
- **Air vent**
- **CO₂ sensors**
- **RH sensors**
- **Temperature sensors**
- **Conditioned Grains**
- **Plenum**
- **Aeration**

Normal Moisture Grain (14.57%) in Sealed Bin

- **Bin opened and grain aerated**
- **Date/Time:** 7/3/19, 7/5/19, 7/7/19, 7/9/19, 7/11/19, 7/13/19, 7/15/19, 7/17/19, 7/19/19, 7/21/19
- **Temperature, °F:**
- **CO₂, ppm:**
 - **Top**
 - **Bottom**
- **Temp Top**
- **Temp Bottom**
- **Temp_Headspace**
- **Temp_Ambient**
Grain with hotspot (17.9→16.42%) in sealed bin

Grain at 14.57% mc
Post-Harvest Grain Quality

Grain with hotspot (18.86% mc)

Key Observations

- Monitoring both headspace and plenum CO₂ essential
- CO₂ peaked with daily rise of ambient and headspace temperature
- Although there was little daily variation of temperature within the grain, the followed the general trend of atmosphere and headspace
- Temperature within the grain does not reflect the variation of CO₂
CO₂ Monitoring at grain facility

CO₂ monitoring points

CO₂ sensors