P. J. Gunn ${ }^{1}$, R. P. Lemenager ${ }^{1}$, L. A. Horstman ${ }^{2}$ and G. A. Bridges ${ }^{3}$
${ }^{1}$ Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
${ }^{2}$ Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
${ }^{3}$ North Central Research and Outreach Center, University of Minnesota, Grand Rapids 55744
\section*{Efficacy of a new, once-used, or twice-used CIDR in a 5 day CO-Synch + CIDR estrous synchronization protocol in suckled beef cows}

The objective of this experiment was to compare timed-AI (TAI) pregnancy rates (PR) in suckled beef cows treated with either a new, once-used, or twice-used CIDR within the 5-d COSynch + CIDR protocol. Angus-cross beef cows ($\mathrm{n}=307$) from 2 locations were stratified by estrous cycling status as determined by identification of a corpus luteum (CL) via transrectal ultrasonography on $\mathrm{d}-11$ and -1 ($\mathrm{d} 0=$ CIDR insertion, $\mathrm{d} 8=$ TAI), age (2 yr old; $\mathrm{n}=68 \mathrm{vs} . \geq 3$ yr [mature]; $\mathrm{n}=239$), and BCS and randomly allotted to 1 of 3 treatments. Cows were enrolled in the 5-d CO-Synch + CIDR protocol that included either: 1) a new CIDR (NEW); 2) a CIDR previously used once in a 5-d estrous synchronization protocol (1X); or 3) a CIDR previously used in two, 5 -d estrous synchronization protocols (2X). Blood samples were collected at d -11 , d-1 and d 15 for analysis of progesterone (P4) to confirm ultrasound findings for cycling status and to assess the proportion of previously anestrous cows that ovulated and developed a functional CL following TAI. Determination of pregnancy was performed by transrectal ultrasonography 31 d after TAI. Categorical and continuous data were analyzed with the GLIMMIX and MIXED procedures of SAS, respectively. The proportion of cows cyclic by d-1 (75.8\%) did not differ between treatments. TAI PR did not differ ($P=0.40$) amongst NEW (55.7\%), 1X (57.8\%), and 2X (49.5\%) treatments. However, there was a treatment \times age interaction ($P<0.001$). In 2 yr olds, the 2X (78.3\%) treatment had greater ($P=0.003$) TAI PR than the NEW (34.7\%) treatment, with 1X treatment being intermediate (59.1\%). In mature cows, the NEW (61.7\%) and 1X (57.5\%) treatments had greater ($P \leq 0.02$) TAI PR than the 2X (41.0\%) treatment. In addition, TAI PR was greater $(P=0.008)$ in cyclic (56%) than non-cyclic (50%) cows. On d 15 , the proportion of previously anestrous cows that had greater than $1 \mathrm{ng} / \mathrm{mL}$ of P4 (94.7\%) and mean P4 concentrations ($4.37 \pm 0.20 \mathrm{ng} / \mathrm{mL}$) did not differ amongst treatments. In summary, cow age impacts the number of times a CIDR can be effectively used in the 5-d CO-Synch + CIDR protocol.

Beef cow, CIDR, timed AI

