What does the future of hydrologic/water quality modeling hold?

Bernie Engel, Professor and Associate Dean for Agricultural Research and Graduate Education Agricultural and Biological Engineering and College of Agriculture, Purdue University

Email: engelb@purdue.edu

Trends Impacting Modeling

- Model improvement
- Computational capabilities
- Sensors and data
- Data science

Advances in Models

- Better representation of processes
 - Additional processes represented
 - Interactions of processes
 - Span spatial scales

Computational capabilities

- Supercomputers
- Parallel computing
- Cloud based computing and storage
- Edge computing

Large Area Assessment

NLCD 2011 edition datasets (2001, 2006, 2011, and 2016) across the nation makes the assessment of urbanization impacts on surface runoff at the national level feasible.

Input Data:

The State Soil Geographic (STATSGO) dataset (Wolock, 1997)

The NLCD 2001, 2006, 2011, and 2016

CLIGEN (climate generator) 50-year daily precipitation for each of 2,527 weather stations

Focused on urban land

How has urbanization impacted water quality on a national scale?

Sensing and Data

- IoT
- Better spatial and temporal resolution data
- Flows of data from federal, state and other sources
- Data that modelers have been wishing for becoming available or on horizon

IoT4Ag Mission

loT4Ag

To create and translate to practice Internet of Things (IoT) technologies for precision agriculture and to train and educate a diverse workforce that will address the societal grand challenge of food, energy, and water security for decades to come.

Data Science

- Data flows/Data pipelines
- Machine learning
- Al

Introduction

6. Results and Discussion

6.2 Watershed level optimization results

Watershed level optimization results.

6. Results and Discussion

6.3 Optimized scenarios that attain the watershed management plan goal

A framework for creation of decision support systems for sustainable water management

Purdue UNIVERSITY

Metadata

us

indows Internet Explorer	lorer									
gi-bin-wi-10/lthia2_wi_10.html?del=0&watershed=wdcjy100895&statename=Wisconsin&countyname=A		ł http://cobweb.ecn.purdue.edu/~watergen/owls/outputfig/wdcjy100895/mainoutput.html 💽 🍫 🗙 Live Search								
	File Edit View	Favorites Tools Help								
	🚖 🏟 🏀 L-ТН	IA Basic Input			han - 🗟 - 🖶 - 📴					
vnload KML	Home	L-THIA Basic Input								
	Documentation	• Nam	e to identify output:		wdcjy10089					
	Detailed Input Advanced Input	• Cou	nty:		Adams					
	Input	• Are:	a in :		acres					
Run LTHIA Digitize Summary SEDSPEC mpervic	Previous Results	LAND USE	HYD. SOIL G	ROUP 1	2					
Click on link to Run SWAT LTHIA Run LTHIA			- _	SCENARIO 1	SCENARIO 2 SC					
Click on link to Run Midwest Calibrated LTHIA <u>Run LTHIA</u> Click on link to Run LTHIA Model with standard curve numbers <u>Ru</u>		Water/Wetlands		153.6						
		High Density Residenti		10.1						
		Low Density Residentia		51.8						
•		Grass/Pasture		80.2						
		Forest		326.5						
I and use and S	Soils	se se								
			• A •							
automatically e	enter	ed se	• A •							
			Total Are	ea 766.4	0					
into spreadshe	et									
				RUN Calibrated L-THI	A					
				Back to Watershed Deline	eation					
Je search the map										
2 be, USDA Farm Service Agency, GeoEye, TerraMe										
Purdue University is an Equal Opportunity/Equal Access institution.	↓									
🚺 Start 🛛 🧐 🧭 🚱 🚳 🕒 🛛 🔽 Vindoss + 🔯 2 Windows + 🎕 Untitle	d - Arc 🥖 🏉 8 Inte	rnet	🖳 LTHIA LID_e	LTHIA_2009 🔂 2 Notepad	▼ 2					

Overview of Web-based LDC Tool and STEPL

Enhancement of Web-based LDC Tool – Result

Landuse	D) (D Name	B	MP Efficien	ncy (fraction	n)	E. Cost ¹ M. Cost		Life ³
	BAIT Name	N	P	BOD	S		M. Cost-	
Cropland	Contour Farming	0.485	0.55	0	0.405	6	1	1
Cropland	Diversion	0.1	0.3	0	0.35			
Cropland	Reduced Tillane Systems	0.55	0.45	0	0.75	2 72	1	1

User can run an optimization module to compare efficiency of BMPs for the specific load target.

I VIESL	Innan Arass ann iafanna seannið	Ľ		Ľ	V.71	لـــــا		
Forest	Road hydro mulch	0	0	0	0.41		1	10
Forest	Road straw mulch		0	0	0.41		1	10
Forest	Road tree planting	0	0	0	0.5		1	10
Forest	Site preparation/hydro mulch/seed/fertilizer	0	0	0	0.71	1500	1	10
Forest	Site preparation/hydro mulch/seed/fertilizer/transplants	0	0	0	0.69		1	10
Forest	Site preparation/steep slope seeder/transplant	0	0	0	0.81			
Forest	Site preparation/straw/crimp seed/fertilizer/transplant	0	0	0	0.95			
Forest	Site preparation/straw/crimp/net	0	0	0	0.93	14359	18	10
Forest	Site preparation/straw/net/seed/fertilizer/transplant	0	0	0	0.83		1	10

GeoAPEXOL

					Wait for couple seconds to 1 minute, you will have the results and scroll down to see the results			
	Critical Source Area (ha):	9 🕜 T	File drainage depth	(m): Tile_not_installed				
Draw a field boundary 🖉 NASS 2016 🗆 Fallow 🔍 Perennial Grass 🔍 Tree Run APEX Model								
Area Weighted Average Annual Values for the field								
Scenario	Surface runoff (mm)	Soil Erosion (ton/ha)		Total Nitrogen (kg/ha)	Total Phosphorus (kg/ha)			
nass2016	194.9	0.17		8.49	0.04			
fallow	289.9	0.3	7	2.05	0.06			
peregrass	peregrass 73.2		0.02 0.27		0.03			
trees	85.0	0.0	2	0.85	0.03			

What Might the Future Hold?

- Models that learn and adapt to their application area to improve estimates
- Intelligent modeling systems that support local decision making
- Location (field and small watershed) specific regulatory approaches supported by models and real time data
- Within year, location specific regulatory approaches supported by models
- What do all of these have in common?
 - Data science, IoT, computational advances