INSTRUCTOR: Dr. Sandra Rossie
E-mail: rossie@purdue.edu
Telephone: 494-3112
Office hrs: by appointment

TIME AND PLACE
Tues 1:30-3:30PM, UNIV 103

ATTENDANCE POLICY:
Because grades are based on class participation it is important for students to attend all student presentations. Let me know ahead of time if you must miss a presentation date. Excused absences include business travel (i.e. science meeting), illness, a family emergency or pre-planned event (such as wedding). Excused absences must be requested ahead of time and may require official documentation at the discretion of the instructor. For unexcused absences, your grade will drop by 1 full letter (i.e A to B).

COURSE OBJECTIVES:
This is a 1 credit course designed for 2nd or 3rd year graduate students.

READING: Selected reviews and primary literature

LEARNING OUTCOMES:
BCHM 69000 students will acquire the ability to develop presentation skills using primary literature and research techniques as a forum for discussion. They will also practice asking questions of the presenter and introducing a speaker.

ASSESSMENT:
Grade Policy: Grades will be based on 2 class presentations (75% grade) and participation in class discussions and written critiques (25% grade). Grades will be based on the clarity of your presentations, your improvement from the first to the second presentation, and your participation in discussions. As mentioned above (Attendance policy), unexcused absences will result in a lower grade.

Exams: No exams

ACADEMIC MISCONDUCT:
Academic misconduct of any kind will not be tolerated in any course offered by the Department of Biochemistry. Information on Purdue’s policies with regard to academic misconduct can be found at http://www.purdue.edu/ODOS/osrr/integrity.htm.

To provide you with an unambiguous definition of academic misconduct, the following text has been excerpted from "Academic Integrity: A Guide for Students", written by Stephen Akers, Ph.D., Executive Associate Dean of Students (1995, Revised 1999, 2003), and published by the Office of the Dean of Students in cooperation with Purdue Student Government, Schleman Hall of Student Services, Room 207, 475 Stadium Mall Drive West Lafayette, IN 47907-2050.
“Purdue prohibits "dishonesty in connection with any University activity. Cheating, plagiarism, or knowingly furnishing false information to the University are examples of dishonesty." [Part 5, Section III-B-2-a, University Regulations] Furthermore, the University Senate has stipulated that "the commitment of acts of cheating, lying, and deceit in any of their diverse forms (such as the use of substitutes for taking examinations, the use of illegal cribs, plagiarism, and copying during examinations) is dishonest and must not be tolerated. Moreover, knowingly to aid and abet, directly or indirectly, other parties in committing dishonest acts is in itself dishonest." [University Senate Document 72-18, December 15, 1972]

More specifically, the following are a few examples of academic dishonesty which have been discovered at Purdue University.

- substituting on an exam for another student
- substituting in a course for another student
- paying someone else to write a paper and submitting it as one's own work
- giving or receiving answers by use of signals during an exam
- copying with or without the other person's knowledge during an exam
- doing class assignments for someone else
- plagiarizing published material, class assignments, or lab reports
- turning in a paper that has been purchased from a commercial research firm or obtained from the internet
- padding items of a bibliography
- obtaining an unauthorized copy of a test in advance of its scheduled administration
- using unauthorized notes during an exam
- collaborating with other students on assignments when it is not allowed
- obtaining a test from the exam site, completing and submitting it later
- altering answers on a scored test and submitting it for a re-grade
- accessing and altering grade records
- stealing class assignments from other students and submitting them as one's own
- fabricating data
- destroying or stealing the work of other students

Plagiarism is a special kind of academic dishonesty in which one person steals another person's ideas or words and falsely presents them as the plagiarist's own product. This is most likely to occur in the following ways:

- using the exact language of someone else without the use of quotation marks and without giving proper credit to the author
- presenting the sequence of ideas or arranging the material of someone else even though such is expressed in one's own words, without giving appropriate acknowledgment
- submitting a document written by someone else but representing it as one's own"

EMERGENCY PREPAREDNESS:

In the event of a major campus emergency, course requirements, deadlines and grading percentages are subject to changes that may be necessitated by a revised semester calendar or other circumstances. To get information about changes in this course consult the class Blackboard site or e-mail or phone the instructor.

If you are ill with flu-like symptoms, please do not attend class. Course materials will be provided to you.

ON-LINE COURSE EVALUATIONS:

During the last two weeks of the semester, you will be provided an opportunity to evaluate this course and your instructor(s). To this end, Purdue has transitioned to online course evaluations. On Monday of the fifteenth week of classes, you will receive an official email from evaluation administrators with a link to the online evaluation site. You will have two weeks to complete this evaluation. Your participation in this evaluation is an integral part of this course. Your feedback is vital to improving education at Purdue University. I strongly urge you to participate in the evaluation system.
SCHEDULE OF PRESENTATIONS

You will be asked to give one presentation from the primary literature and one presentation on a current method. You will receive critiques from the instructors and other class members. If you have little or no experience giving talks I suggest you give your methods presentation first. Grades will be based on the clarity of your presentations, your improvement from the first to the second presentation, and your participation in discussions. Every week, each speaker will introduce the other speaker for that week.

<table>
<thead>
<tr>
<th>Date</th>
<th>1st Speaker Literature</th>
<th>2nd Speaker Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 21</td>
<td>Sandra Rossie-</td>
<td>Class outline</td>
</tr>
<tr>
<td>Aug 28</td>
<td>Benjamin Carter</td>
<td>Liang Qin</td>
</tr>
<tr>
<td>Sept 4</td>
<td>Christopher Petell</td>
<td>Linna Wang</td>
</tr>
<tr>
<td>Sept 11</td>
<td>Faeze Saatchi</td>
<td>Long Chen</td>
</tr>
<tr>
<td>Sept 18</td>
<td>Kriti Shrestha</td>
<td>Hongji Gui</td>
</tr>
<tr>
<td>Sept 25</td>
<td>Jiazhen Zhang</td>
<td>Anwesha Sanyal</td>
</tr>
<tr>
<td>Oct 2</td>
<td>Liang Qin</td>
<td>Benjamin Carter</td>
</tr>
<tr>
<td>Oct 9</td>
<td>NO CLASS</td>
<td>OCTOBER BREAK</td>
</tr>
<tr>
<td>Oct 16</td>
<td>Linna Wang</td>
<td>Christopher Petell</td>
</tr>
<tr>
<td>Oct 23</td>
<td>Long Chen</td>
<td>Faeze Saatchi</td>
</tr>
<tr>
<td>Oct 30</td>
<td>Hongji Gui</td>
<td>Kriti Shrestha</td>
</tr>
<tr>
<td>Nov 6</td>
<td>Anwesha Sanyal</td>
<td>Jiazhen Zhang</td>
</tr>
</tbody>
</table>
General guidelines for presentations:

- Plan to present 40 min maximum. Don’t present a method or paper you’ve presented (or will present) elsewhere. Practice your talk and look at your slides as they are projected. Make sure your pictures are clear and large and that your talk takes the right amount of time.

Research papers:

- Choose a recent paper that will be understandable and interesting to someone studying biochemistry and molecular biology.
- Introduction: what question is addressed and why is it important & interesting?
- Background: tell us briefly what was established before this study, introduce important concepts, molecules and vocabulary we will need to know throughout the talk. Don’t assume we will remember every abbreviation used in the paper.
- Data: tell us briefly what the goal of each experiment was, what was measured and how, present the most important (not necessarily all) data, and conclusions. Be critical and thoughtful; point out what is missing or what you don’t agree with.
- Summary: Briefly repeat the most important new findings and how this study advanced its field. What future studies should be done? Again, be critical and thoughtful. Tell us what you think about the paper & why.

Methods:

- Choose a method that is relatively new or challenging. A new variation on an established technique is a reasonable choice. You may or may not have an article for us to read.
- Introduction: what scientific questions are addressed by the method you will present, and why are they important? How were these questions addressed before your new method and what were the technical limitations?
- Explain the method in reasonable detail. Point out what is new and different. Illustrate the new measurement with real data from the literature if possible.
- Compare practical aspects of this new technique to those of established methods: cost, ease, number of samples processed, amount/type of biological material required, accuracy, special equipment or material that may be required, etc. When would the new method be preferable to the old one(s)?

As the presenter:

- Send a PDF file or post your reference on the Internet or in class at least one week prior to your talk. Bring the audiovisual equipment needed to class with you, available from Biochem Stores (in the basement of Biochemistry next to the elevator in the main hallway). This includes the laser pointer, notebook computer (PC or Mac) and projector.

As a member of the audience:

- Read the reference before class and come prepared to discuss it. Be prepared to ask at least one substantive question at each presentation. Anyone who does not regularly participate in discussion will not receive a grade higher than "B".
- Provide constructive critical feedback on your critique. Little or no meaningful criticism is no help to the speaker in trying to improve future performances. You must give the speaker input so he or she can develop better communication skills.
BIOCHEMISTRY 690 STUDENT SEMINAR EVALUATION

Student Presenting ________________________________
Date ____________________ Research (R) or Method (M) _____

Please answer the following questions- use: 1 = good; 2 = adequate; 3 = needs significant improvement.

BACKGROUND PRESENTATION:
How clearly was the problem or question stated? ______
Was the problem put into proper perspective? ______
Was the student’s knowledge of the subject satisfactory? ______
Comments:

DESCRIPTION OF THE TOPIC:
Was the organization of the presentation logical and coherent? ______
*R ONLY- Were the critical experiments selected? ______
Were the methods described clearly? ______
Was the amount of material presented appropriate? ______
Did the student grasp the complexity of the issues addressed? ______
Did the student appear to have thought critically about the topic? ______
Were the conclusions stated clearly? ______
*M ONLY- Was the value of the new method demonstrated with an example? ______
Comments:

DELIVERY:
Did the student make good use of visual aids? ______
Were diagrams, tables, figures, etc. clear and neat, large enough to read? ______
Did the student handle questions well? ______
Was the speaker’s tone of voice, diction, volume, and intonation reasonable? ______
Comments: