Farm Labor Law Information

For information about the Immigration and Reform Act and current related farm and labor laws that specify employer responsibilities and seasonal agricultural worker status, contact the resources below:

Federal

Office of Special Counsel, Washington, D.C.
Employer Information: (800) 255-8155.
U.S. Citizenship and Immigration Services
(800) 375-5283
(800) 767-1833 (TTY)
www.uscis.gov

Illinois

Travel Control Section, Immigration and Naturalization Service
10 W. Jackson
Chicago, IL 60604

(Migrant Farm Workers and Farm Labor) Department of Labor
310 S. Michigan Ave.
Chicago, IL 60604
(312) 793-2804

Indiana

Immigration and Naturalization Service (INS)
950 N. Meridian Street, Room 400
Indianapolis, IN 46204-3915

Indiana Department of Workforce Development
Indiana Government Center South
10 North Senate Avenue
Indianapolis, IN 46204
1-888-WORKONE
workone@dwd.in.gov
www.IN.gov/dwd/

Kansas

Plant Disease Diagnostic Lab
Extension Plant Pathology
4032 Throckmorton Hall
Kansas State University
Manhattan, KS 66506-5504
(785) 532-5810
Fax: (785) 532-5692
www.plantpath.ksu.edu/p.aspx?tabid=49
Contact:
Judith O’Mara
jomara@ksu.edu

Minnesota

Plant Disease Clinic
Department of Plant Pathology
495 Borlaug Hall
1991 Upper Buford Circle
University of Minnesota
St. Paul, MN 55108
(612) 625-1275
Fax: (612) 625-9728
pdc.umn.edu
Contact:
Brett Arnaz
aren0058@umn.edu

Missouri

Plant Diagnostic Clinic
28 Mumford Hall
Columbia, MO 65211
(573) 882-3019
plantclinic.missouri.edu
Contact:
Patti Hosak
(573) 882-3019
plantclinic@missouri.edu

Plant Nematology Lab
23 Mumford Hall
University of Missouri
Columbia, MO 65211
(573) 884-9118
Fax: (573) 884-4288
soilplantlab.missouri.edu/nematode
Contact:
Amanda Howland
nematodelab@missouri.edu

Ohio

C. Wayne Ellett Plant and Pest Diagnostic Clinic
Ohio State University
8995 E. Main St., Bldg. 23
Reynoldsburg, OH 43068
(614) 292-5006
Fax: (614) 466-9754
ppdc.osu.edu
Contact:
Nancy Taylor
taylor.8@osu.edu or ppdc@cfaes.osu.edu
On-farm Food Safety

Good Agricultural Practices (GAP) present a set of guidelines that can prevent or reduce the risk of potential contamination of vegetables in the field and during post-harvest production. Foodborne pathogens associated with fresh produce include
\(E. \text{coli} \ O157:H7, \) Salmonella spp., Shigella spp., Norovirus, hepatitis A virus, Cyclospora cayatanensis, and Listeria monocytogenes. To reduce the risk of foodborne illness, vegetable growers should adopt GAPs, paying particular attention to water management.

Water Management

Water is essential for crops, but it also is an excellent growth medium for microorganisms. Water is a major source of contamination in crop production. Growers use water for irrigation, washing products, hydro-cooling, icing, applying fertilizers and pesticides, preparing soil amendments, and washing equipment and facilities. It is important to make sure that any water that comes in contact with the crop is microbiologically clean.

Growers should carefully monitor irrigation water and processing water.

Irrigation Water

The quality and safety of irrigation water determines the quality and safety of the produced crop. And the safety of the water depends on its source: is it ground water or surface water. Pathogens can be introduced into irrigation water through manure runoff from animal production facilities, sewage runoff from treatment facilities, or directly from wildlife. Extreme rainfall, manure spills, or human waste can increase the probability of contamination occurring.

Ground water is less likely to be contaminated due to the natural filtration through soil layers. Well water when used directly bears a relatively low contamination risk, provided that well walls are properly constructed and well maintained. Still, there is a potential for contamination if animals frequent the area surrounding the wellhead or sewage leaks into the recharge area. If well walls are fortified with clean soil, with no gaps between the well and soil, runoff will flow away from well.

Surface water (such as ponds, creeks, and rivers) can easily be contaminated by runoff or wildlife. Surface water also has more variable microbial quality and the level of contamination may rapidly change.