
Should Variable Soil Residual Herbicide Rates Be Determined by Soil Type, Weed Seedbank Densities, or Both?

WEED

SCIENCE

Uniform Herbicide Applications

Soil residual herbicides applied uniformly

 Single dose selected based on average soil test results, most limiting soil parameter, or local practice

Uniform Herbicide Applications

Soil residual herbicides applied uniformly

- Single dose selected based on average soil test results, most limiting soil parameter, or local practice
- Fields with high variability of soil parameters may result in over- or underapplication
 - Over-application: Potential crop injury and unnecessary cost
 - Under-application: Early weed escapes


PURN

Uniform Herbicide Applications

Soil residual herbicides applied uniformly

- Single dose selected based on average soil test results, most limiting soil parameter, or local practice
- Fields with high variability of soil parameters may result in over- or underapplication
 - Over-application: Potential crop injury and unnecessary cost
 - Under-application: Early weed escapes
- Best management practices (BMP)
 - Residual herbicides
 - Full label rates

Metribuzin Labeled Rates

Metribuzin Rates (g ai ha ⁻¹)				
% OM	Coarse	Medium	Fine	
<2	DO NOT USE	400 – 533	533 – 666	
2 – 4	400	533 – 666	533 – 932	
≥4	400	666 – 799	1065	


Mapping

Non-uniform soil residual herbicide applications require accurate soil classification mapping.

Mapping

Non-uniform soil residual herbicide applications require accurate soil classification mapping.

Previous research indicates electrical conductivity data and grid soil sampling produces most accurate maps. (Vagedes et al. 2023)

Variable Rate Herbicide Applications

Site-specific weed management technology allows for variable rate applications

Variable Rate Herbicide Applications

- Site-specific weed management technology allows for variable rate applications
- Variable rate application of soil residual herbicides could improve weed control while reducing crop injury

Variable Rate Herbicide Applications

- Site-specific weed management technology allows for variable rate applications
- Variable rate application of soil residual herbicides could improve weed control while reducing crop injury

Grain sorghum research (Gundy et al. 2022)

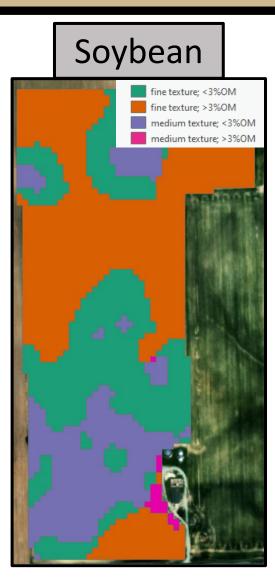
- Reduced overall herbicide applied
- Reduced overall weed control

Hypotheses

Variable rate herbicide applications will minimize potential crop injury and optimize weed control.

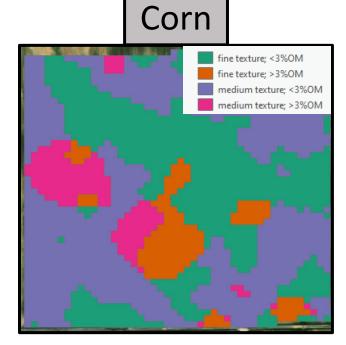
Objective

Quantify the influence of variable rate applications of soil residual herbicides in corn and soybean production in terms of crop injury, weed control, and crop yield.


Materials and Methods

Field trials established 2023

- Two previously mapped fields
 - (EC + grid sampling)
- Giant ragweed major concern



Materials and Methods

Field trials established 2023

- Two previously mapped fields
 - (EC + grid sampling)
- Giant ragweed major concern

Materials and Methods: Application

Grower selected herbicides and base rates
 Variable rates: median of label recommendation range

Labeled Herbicide Rates

Clopyralid + Flumetsulam Rates (g ai ha ⁻¹)				
% OM Coarse Medium - Fine				
<3	139 + 52 (191)	139 + 52 (191) - 174 + 65 (239)		
>3	139 + 52 (191) - 174 + 65 (239)	174 + 65 (239)		

Sulfentrazone Rates (g ai ha-1)				
% OM	Coarse	Medium	Fine	
<1.5	158 – 210	210 – 280	280	
1.5 – 3	210 – 280	280 – 354	354	
>3	280 – 354	354 – 420	420	

Cloransulam Rates (g ai ha ⁻¹)		
% OM	All Soil Textures	
<3	35	
>3	44	

PURD

WEFD

SCIENCE

UE

Materials and Methods: Application

Grower selected herbicides and base rates

Variable rates: median of label recommendation range

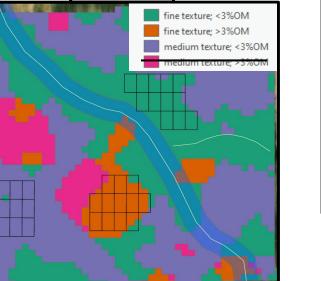
Soybean

Corn*

PURN

Rate	Cloransulam	Sulfentrazone	Rate	Flumetsulam	Clopyralid
Levels	g ai ha ⁻¹		Levels	g ai ha ⁻¹	
Base	18	175	Base	33	87
Low	31	314	Low	59	156
Medium	35	354	High	65	174
High	42	420	*Atrazine applied at fixed rate: 1681 g ai ha ⁻¹		81 g ai ha ⁻¹

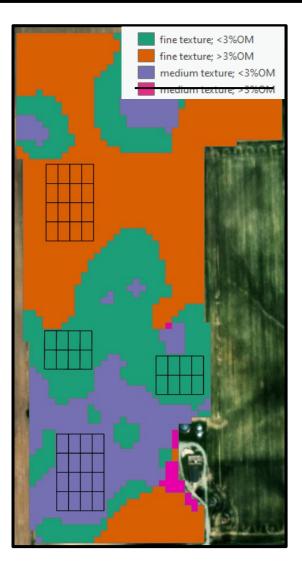
-Applied using ATV sprayer calibrated to apply 140 L ha⁻¹


Materials and Methods

Field trials established 2023


- Two previously mapped fields
 - (EC + grid sampling)
- 18 x 30 m plots
- Giant ragweed major concern

Materials and Methods: Soil Sampling



Seedbank grow out

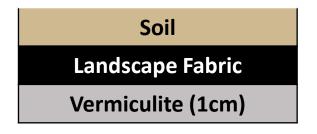
- ■6 cores
- 7 x 8 cm each (0.042 m² surface area/plot)

Materials and Methods: Soil Sampling

Seedbank grow out

- 6 cores
- 7 x 8 cm each (0.042 m² surface area/plot)

Soil type confirmation 3 cores


Materials and Methods: Soil Seedbank

Grow out method (Wilson et al. 2011)

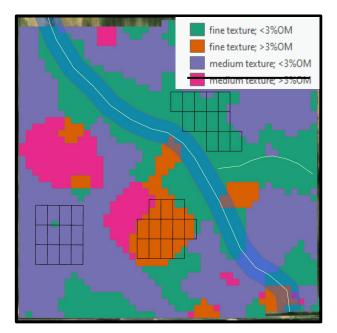
- 1 month/ run
- 3 runs dried between each
- ✤50x25cm flat (1)/plot
- Sub-irrigated

Weeds counted by species as they emerged

Materials and Methods: Experimental Design and Analysis

Three-factor factorial

- Factor 1: Soil Residual Herbicide Rate
- Factor 2: Soil Texture Class
- Factor 3: Species seedbank abundance
- RCBD with 4 replications
- Data Collection
 - Crop stand counts(14 DAP and prior to POST)
 2m row/plot
 - Weed counts (14 DAP and prior to POST)
 8 m²/plot
- Analysis via 3-way ANOVA (R studio 4.3.1)
 - Tukey adjustment (α = 0.05)

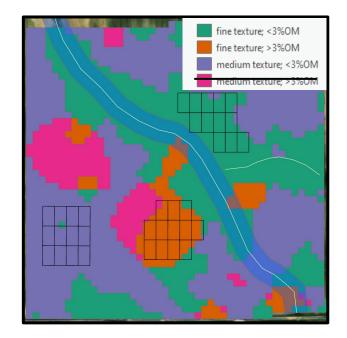


Results

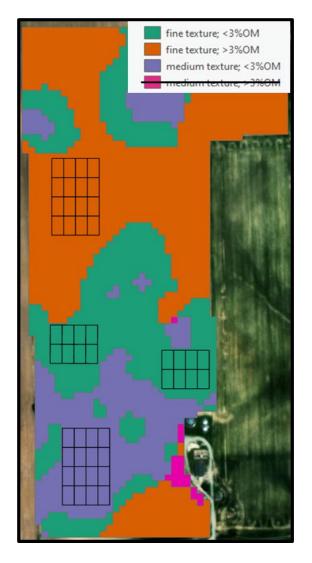
Results - Corn

Predominant weeds included:

- Eastern black nightshade (Solanum ptycanthum)
- Velvetleaf (Abutilon theophrasti)
- Burcucumber (Sicyos angulatus)
- Ivyleaf morningglory (Ipomoea hederacea)


Results - Corn

Predominant weeds included:


- Eastern black nightshade (Solanum ptycanthum)
- Velvetleaf (Abutilon theophrasti)
- Burcucumber (Sicyos angulatus)
- Ivyleaf morningglory (Ipomoea hederacea)

Weed emergence at both timings were not influenced by herbicide rate, soil type, or seedbank densities.

Overall low weed abundance

Results - Soybean

Predominant species included:

- Giant ragweed (Ambrosia trifida)
- Prickly sida (Sida spinosa)
- Ivyleaf morningglory
- Annual grasses
 - Barnyardgrass (Echinochloa crus-galli)
 - Large crabgrass (Digitaria sanguinalis)
 - Fall panicum (*Panicum dichotomiflorum*)
 - Giant foxtail (Setaria faberi)
 - Yellow foxtail (Setaria pumilla)

Results - Giant Ragweed

Factor	F value	P value
Seedbank Abundance	F 1, 34 = 164.13	<0.001 ***
Herbicide Rate	F 1, 34 = 1.74	0.178
Soil Type	F 1, 34 = 9.87	<0.001 ***

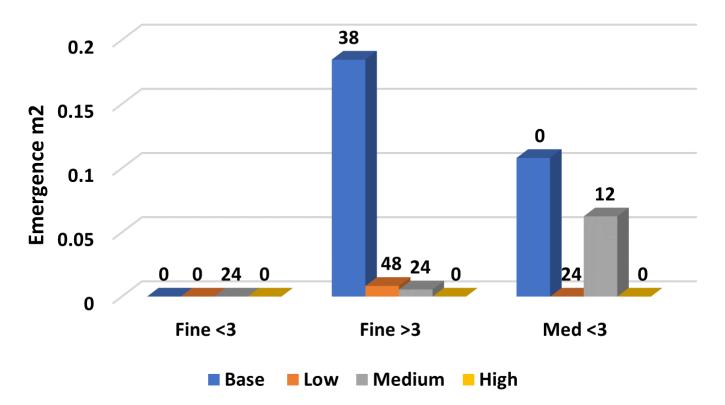
Results - Giant Ragweed

Giant ragweed emergence prior to POST influenced by soil seedbank abundance and soil type individually rather than herbicide rate.

Factor	F value	P value
Seedbank Abundance	F 1, 34 = 164.13	<0.001 ***
Herbicide Rate	F 1, 34 = 1.74	0.178
Soil Type	F 1, 34 = 9.87	<0.001 ***

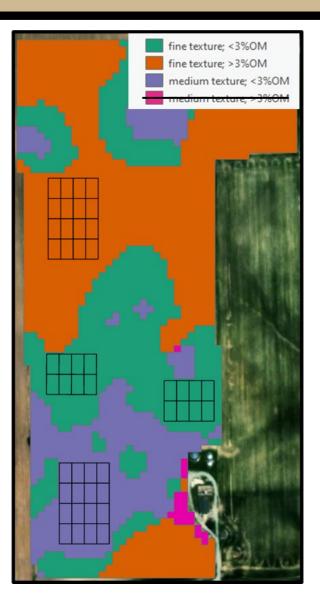
Results - Prickly Sida

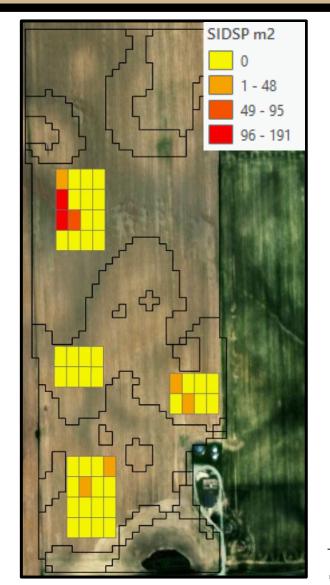
Factor	F value	P value
Seedbank Abundance	F 1, 29 = 56.67	<0.001 ***
Herbicide Rate	F 3, 29 = 3.35	0.032 *
Soil Type	F 3, 29 = 1.47	0.243
Rate : Soil Type	F 6, 29 = 5.23	<0.001 ***
Rate : Abundance	F 2, 29 = 2.98	0.066
Soil Type : Abundance	F 2, 29 = 5.16	0.012 *
Rate : Soil Type : Abundance	F 1, 29 = 37.66	<0.001 ***


Results - Prickly Sida

Emergence prior to POST influenced by the interaction of weed seedbank abundance, herbicide rate, and soil type.

Factor	F value	P value
Seedbank Abundance	F 1, 29 = 56.67	<0.001 ***
Herbicide Rate	F 3 <i>,</i> 29 = 3.35	0.032 *
Soil Type	F 3, 29 = 1.47	0.243
Rate : Soil Type	F 6, 29 = 5.23	<0.001 ***
Rate : Abundance	F 2, 29 = 2.98	0.066
Soil Type : Abundance	F 2, 29 = 5.16	0.012 *
Rate : Soil Type : Abundance	F 1, 29 = 37.66	<0.001 ***


Results - Prickly Sida

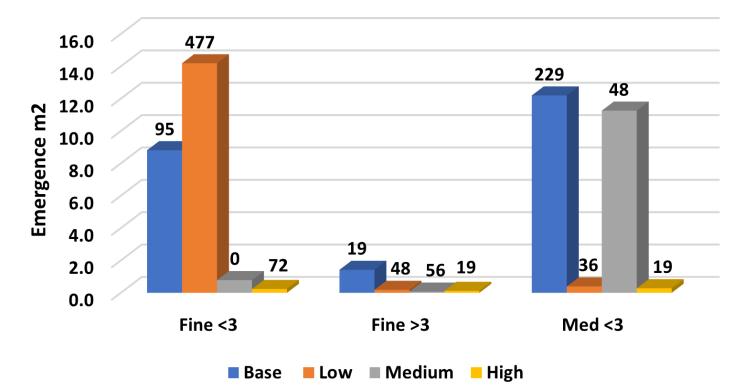

Prior to POST

Numbers over bars indicate species seedbank abundance (m⁻²)

Prickly Sida Seedbank Abundance

Results - Annual Grasses

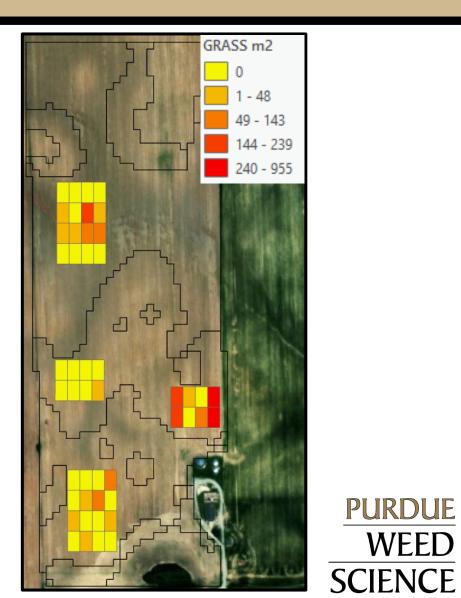
Factor	F value	P value
Seedbank Abundance	F 1, 24 = 37.44	<0.001 ***
Herbicide Rate	F 3, 24 = 8.95	0.002 **
Soil Type	F 3 <i>,</i> 24 = 6.79	<0.001 ***
Rate : Soil Type	F 6, 24 = 3.17	0.020 *
Rate : Abundance	F 3, 24 = 5.53	0.005 **
Soil Type : Abundance	F 2, 24 = 8.29	0.002 **
Rate : Soil Type : Abundance	F 5, 24 = 5.55	0.002 **


Results - Annual Grasses

Emergence prior to POST influenced by the interaction of weed seedbank abundance, herbicide rate, and soil type.

Factor	F value	P value
Seedbank Abundance	F 1, 24 = 37.44	<0.001 ***
Herbicide Rate	F 3, 24 = 8.95	0.002 **
Soil Type	F 3, 24 = 6.79	<0.001 ***
Rate : Soil Type	F 6, 24 = 3.17	0.020 *
Rate : Abundance	F 3 <i>,</i> 24 = 5.53	0.005 **
Soil Type : Abundance	F 2, 24 = 8.29	0.002 **
Rate : Soil Type : Abundance	F 5, 24 = 5.55	0.002 **

Results - Annual Grasses


Prior to POST

Numbers over bars indicate species seedbank abundance (m⁻²)

Annual Grasses Seedbank Abundance

PURDUE

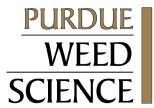
WEED


Conclusion

Variable rate applications of soil residual herbicides may need to consider both soil type and the spatial variability in the abundance of the soil weed seedbank to provide a valuable benefit for farmers.

Future Research

Greenhouse bioassays on herbicide treated soils to quantify herbicide in soil solution from variable rate application.



Future Research

Greenhouse bioassays on herbicide treated soils to quantify herbicide in soil solution from variable rate application.

Determine economic value of variable rate application.

Acknowledgements

- Funding by Indiana Soybean Alliance and Indiana Corn Marketing Council
- Farm cooperator
- Purdue Weed Science group

PURDUE

WFFI

SCIENCE

Questions?