Herbicide Active, Carrier Volume, and Spray Deposition for Optimizing Drone Herbicide Applications

> Hunter A. Medenwald¹ Julie M. Young¹ William G. Johnson¹ Bryan G. Young²

¹Purdue University, West Lafayette, IN ²Purdue University, Brookston, IN

Introduction

- Spray drones have recently gained popularity in the United States as a new application method to apply pesticides
- Fungicide applications in corn have been the primary driver for increased spray drone usage in the Midwest
- Spray drone applications occur at ultra-low carrier volumes to maximize operational efficiency with limited tank size and battery life

Aerial Application Equipment

Photo credit: General Aviation News

Fixed-wing

- <u>Capacity:</u>
 340 to 3000 liters
- <u>Speed:</u>
 200 to 230 km hr⁻¹
- <u>Boom Orientation:</u> No greater than 70% of wingspan
- <u>Ferrying Distance</u>: Often long

Photo credit: Botse Aviation

Single-rotor

- <u>Capacity</u>: 75 to 230 liters
- <u>Speed:</u> 80 to 100 km hr⁻¹
- <u>Boom Orientation:</u> No greater than 70% of rotor length
- Ferrying Distance: Long or short

Photo credit: Made-In-China

Multi-rotor

- <u>Capacity</u>: 10 to 70 liters
- <u>Speed:</u> 10 to 50 km hr⁻¹
- <u>Boom Orientation:</u> Varies between models
- <u>Ferrying Distance</u>: Short

Carrier Volume

- Increasing carrier volumes may increase efficacy with contact herbicides, such as glufosinate^{1,2}
- Systemic herbicides may be applied at lower carrier volumes due to translocation capabilities³
- Many herbicides with an aerial application label recommend minimum spray volumes of 47 L ha⁻¹

¹Creech et al. (2015) ²Butts et al. (2018) ³Knoche (1994)

Drone Pesticide Applications

- Previous research with spray drones has evaluated fungicides and insecticides in specialty crops and orchards^{1,2,3,4,5}
- Limited research is available on herbicide applications in row crops with spray drones^{6,7,8,9}

Photo credit: DJI Agriculture

⁶Caputti et al. (2023) ⁷Martin et al. (2020) ⁸Martin et al. (2022) ⁹Takekawa et al. (2023)

Photo credit: DJI Agriculture

Photo credit: No-Till Farmer

Hypotheses

- The systemic activity of glyphosate will result in greater efficacy than the non-systemic activity of glufosinate at low carrier volumes
- Increasing the carrier volume will provide greater coverage resulting in increased efficacy of glufosinate and glyphosate

Objectives

- Evaluate weed efficacy of glyphosate and glufosinate at several low carrier volumes
- Quantify the spray coverage of glyphosate and glufosinate at different carrier volumes in spray drone applications

Drone Parameters

- DJI Agras T30 equipped with 12 TeeJet XR11001 nozzles
- Assumed swath: 9 m
- Height above vegetation: 3 m
- Speeds
 - 9.4 L ha⁻¹ = 24 km hr⁻¹
 - 18.7 L ha⁻¹ = 16 km hr⁻¹
 - 28.1 L ha⁻¹ = 10.7 km hr⁻¹

Two Field Sites

- Agronomy Center for Research and Education (ACRE)
 - West Lafayette, IN
 - XtendFlex soybeans: 346,000 seeds ha⁻¹ in 76 cm rows
- Davis Purdue Agricultural Center (DPAC)
 - Farmland, IN
 - Enlist soybeans: 376,000 seeds ha⁻¹ in 38 cm rows

Experimental Design

- Factorial: herbicide (2) and carrier volume (3) in a RCBD with four replications
 - Herbicides
 - > 717 g ai ha⁻¹ glufosinate
 - 925 g ae ha⁻¹ glyphosate
 - Carrier Volumes
 - > 9.4 L ha⁻¹
 - ▶ 18.7 L ha⁻¹
 - ➤ 28.1 L ha⁻¹
- Benchmark Comparison
 - Hand boom application
 - 140 L ha⁻¹ treatment

Data Collection and Analysis

- Visual Estimates of Weed Control
 - Four individual plants/plot
 - 7 and 14 days after application (DAA)
- Spray-Solution Coverage
 - Kromekote cards placed 0, 1.5, and 3.0 m from the center of spray drone toward the outside of the spray swath
 - Cards fixed on top and bottom of board at each location
 - Pink foam marker dye included in spray solution
- Means separated at (α = 0.05) adjusted for Tukey's HSD using ANOVA in R software (ver. 4.3.1)

Card Locations

Card Locations

Card Locations

Results

Top of Board-ACRE

Bottom of Board-ACRE

Top of Board-DPAC

Bottom of Board-DPAC

Top Card 0 m Location

Ivyleaf Morningglory 14 DAA

Common Ragweed 14 DAA

Conclusions

- Overall, spray coverage was greater at DPAC than at ACRE, which was likely associated with differences in temperature and humidity at the time of application
 - ACRE: 32°C, 45% relative humidity
 - DPAC: 25°C, 60% relative humidity
- Coverage decreased towards the outside of the spray swath at ACRE, while the greatest coverage at DPAC occurred at 1.5 m
- Increasing the carrier volume generally increased spray coverage at all collection points with the exception of glufosinate on top and both herbicides on the bottom of the board at ACRE

Conclusions

- Contrary to our hypothesis, weed control was greater with the contact herbicide glufosinate across carrier volumes at each site compared to the systemic herbicide glyphosate.
- No significant differences were observed when increasing the carrier volume for weed control of ivyleaf morningglory.
- Glufosinate resulted in greater efficacy on common ragweed than glyphosate, but no differences in efficacy were observed across carrier volumes within each herbicide.

Implications

- Increasing the carrier volume in drone applications may not always translate to greater weed control
- Spray coverage across the spray swath is variable and may fluctuate under different environmental conditions
- Adequate weed control was achieved at low carrier volumes with glufosinate

Future Research

- Further investigate contact and systemic herbicides in spray drone applications by repeating trials
- Explore influence of droplet size and carrier volume on weed efficacy
- Quantify herbicide deposition in addition to spray coverage
- Investigate the impact of adjuvant and herbicide formulation on spray pattern uniformity and deposition
- Consider other management sites for utility of herbicide drone applications

Acknowledgements

Questions?

