Using Phenotyping Technology to Diagnose Chemical Stress in Plants

Jada N. Davis, Zhongzhong Niu, Julie M. Young, Jian Jin, William G. Johnson, Bryan G. Young Purdue University

Diagnosing Herbicide Stress in Plants

- Herbicide injury in plants is diagnosed through visual evaluation or through tissue chemical analysis
- Drawbacks
 - Subjectivity of manual evaluation
 - \odot High cost and destructive nature of tissue analysis
 - \odot Biochemical changes occur prior to symptom development

Diagnosing Plant Stress Through Imaging

- The light spectral profile of plant tissue is
 - altered by biochemical changes that result
 - from abiotic and biotic stressors¹
 - \odot Reflected in changes of leaf shape, leaf color,
 - and morphology of the canopy
- Spectral profile differences can be
 - detected through imaging systems¹

Diagnosing Plant Stress Through Imaging

- Hyperspectral imaging evaluates the physiological and morphological parameters of plant tissues simultaneously¹
- Currently used for measuring leaf moisture, chlorophyll content, nutrient content, and disease presence¹

¹Cheshkova (2022) Photo Credit: Lowe et al (2017)

Imaging Use in Herbicide Research

Spectral differences in soybeans treated with a dose range of dicamba can be observed 1 week after treatment using an overhead hyperspectral imager.¹

Hyperspectral imaging can predict the ability of corn to recover from varying levels of glyphosate injury with high accuracy.²

High throughput imaging using a UAV sensor is more precise in evaluating the severity of crop injury from herbicide stress than visual evaluation.³

¹ Zhang et al. (2019)
 ² Zhang et al. (2021)
 ³ Duddu et al. (2019)

Current Hyperspectral Imaging Models

Capture single angle

 Overhead fixed imagers
 UAV imagery

Many sources of noise

- Ambient lighting
- \circ Shadows
- Soil backgrounds
- \odot Varied leaf angles
- \circ Specular lighting

LeafSpec Imager

Early LeafSpec Prototype

Developed by Dr. Jian Jin's lab at Purdue University

- Handheld, high resolution hyperspectral imager
- Geo-referenced imaging data provided in real-time
- Clamps to top and bottom leaf surfaces for set imaging lighting, distance, and angles

Hypothesis

The LeafSpec imager can be used to accurately classify plant injury from foliar herbicide applications prior to visual symptom development.

Objectives

Quantify the accuracy of LeafSpec to detect exposure of soybeans (*Glycine max*) to low doses of dicamba and 2,4-D choline.

Determine the accuracy of LeafSpec classification for herbicides in different site of action groups on waterhemp (*Amaranthus tuberculatus*).

Materials and Methods Soybean Trial

Application

- Soybeans were treated at the V2 growth stage
- Moving track sprayer applied 140
 L ha⁻¹ solution
- 14 replicates per treatment
- Data Collection
 - Visual estimates of injury (0-100%) at 7 and 14 DAT (data not shown)
 - Hyperspectral images collected with LeafSpec at 1, 4, 7 and 14 DAT

Auxin Treatments	Rate
2,4-D choline	1/25 ^{th 1}
2,4-D choline	1/75 ^{th 1}
Dicamba	1/4000 ^{th 2}
Dicamba	1/1000 ^{th 2}
Nontreated	-

1. Fraction of 1065 g ae ha⁻¹ labeled rate

2. Fraction of 560 g ae ha⁻¹ labeled rate

Materials and Methods Waterhemp Trial

SOA Treatments	Rate
Dicamba	17.5 g ae ha ⁻¹
2,4-D choline	17.5 g ae ha ⁻¹
Atrazine	375 g ai ha ⁻¹
Flumioxazin	1.17 g ai ha ⁻¹
Mesotrione	18.75 g ai ha ⁻¹
Norflurazon	270 g ai ha ⁻¹
Nontreated	-

Application

 Waterhemp plants had at least 12 leaves at application. Leaves measured 5 cm in length

• Atomizer applied herbicide spray to wet

- 16 replicates per treatment
- Data Collection
 - Visual estimates of injury (0-100%) at 4 and 7 DAT (data not shown)
 - Hyperspectral images collected with LeafSpec at 1, 4, 7, and 14 DAT

Materials and Methods Data Processing

Various algorithms were used for noise reduction and compared for injury classifications

Model classification accuracy results were represented as confusion matrices

Results

Soybean Injury Classification Accuracy 1 DAT vs 7 DAT

Herbicide Treatment

Soybean Injury Classification Accuracy

- Dicamba exposure was classified with LeafSpec with greater than 85% accuracy at 1 DAT before visual injury symptoms were present.
- 2,4-D classification accuracy increased with time after application to 93% accuracy at 7 DAT.

Waterhemp Classification Accuracy 1, 4, 7 DAT

North Central Weed Science Society

Waterhemp Confusion Matrix

Waterhemp Confusion Matrix

Waterhemp Classification Accuracy

The highest accuracies at 1 DAT were 2,4-D and mesotrione with 75% accuracy.

Atrazine classification accuracy increased over time with 50% accuracy 1 DAT compared to 88% accuracy 4 DAT.

Greater than 70% accuracy was achieved in classifying herbicides with similar symptoms.

Conclusions

Hyperspectral imaging with LeafSpec can predict the herbicide applied before injury symptoms are visible with a high level of accuracy.

LeafSpec imaging allowed for earlier detection of injury symptoms from dicamba compared to visual evaluation.

Distinguishing herbicides with different sites of action is possible with LeafSpec imaging though accuracies varied by herbicide and time after application.

Implications / Future Research

LeafSpec technology would have utility in early herbicide discovery to discern if a molecule is similar to a known SOA group.

Capabilities and limitations found in these results will be used to build improved imaging models combining spectral, morphological, and textural features.

Spectral index heatmaps will be used to increase model classification accuracies of auxin herbicide applications.

Acknowledgements

Purdue Weed Science TeamPurdue Jian Jin Lab

Professor Jian Jin

Welcome to ABE Plant Sensor Lab Our research focuses on developing the next generation plant sensor technologies, along with machine vision, image processing and modeling. The lab also conducts research in other areas of agricultural sensing, broadly defined, and in automation and robotics in agriculture. Our mission is to provide more accurate plant phenotyping sensor technologies to facilitate Digital Agriculture applications. Our LeafSpec technology is commercialized through

Questions?

