Weed Management in Early Planted Soybean

Estevan G. Cason, Bryan G. Young, and William G. Johnson NCWSS 78th Annual Meeting

Early planting

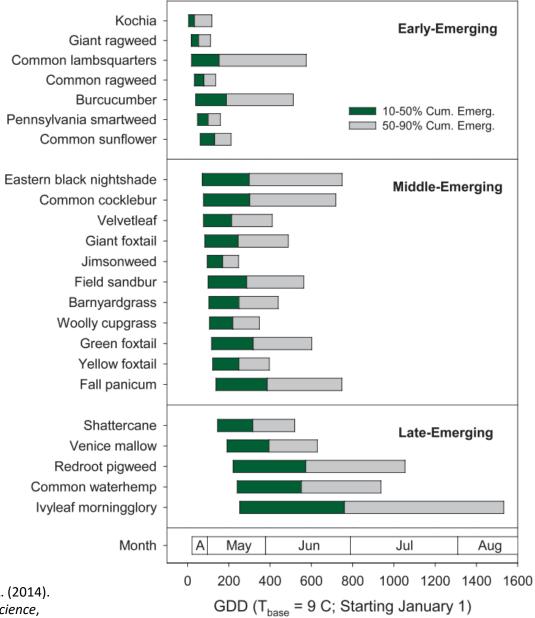
- Extended vegetative and reproductive stages = increased nodes, pods, seeds, and earlier canopy closure in the season^{1,2,3}
- Late April to early May planting in Indiana provides optimal yield potential⁴
- Influence of soil moisture and temperature for germination⁶
- 1. Wilcox & Frankenberger, 1987
- 2. Pedersen & Lauer, 2004
- 3. Casteel, 2023
- 4. Robinson et al., 2009
- 5. Parker et al., 2016
- 6. Tyagi & Tripathi, 1983

Dates of R1 and R6 growth stages for soybeans planted in mid-April and mid-May at parallel 40.4 N⁵

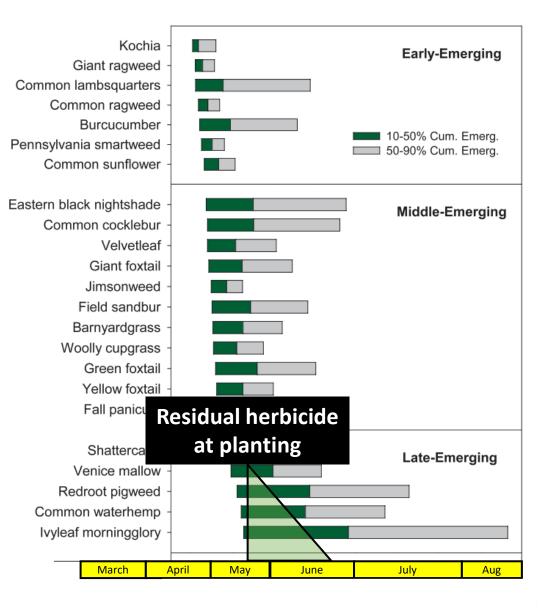
Potential risks

- Frost events
- Injury from soil applied herbicides

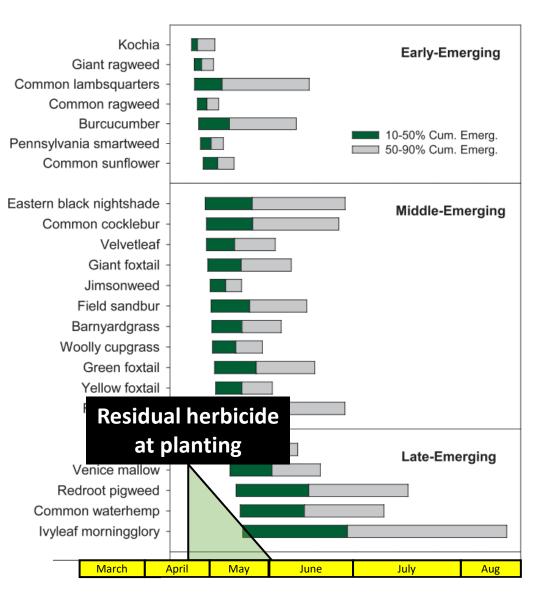
Death of VC soybean after exposure to -2 °C. One week after exposure. Photo: Bob Nielsen



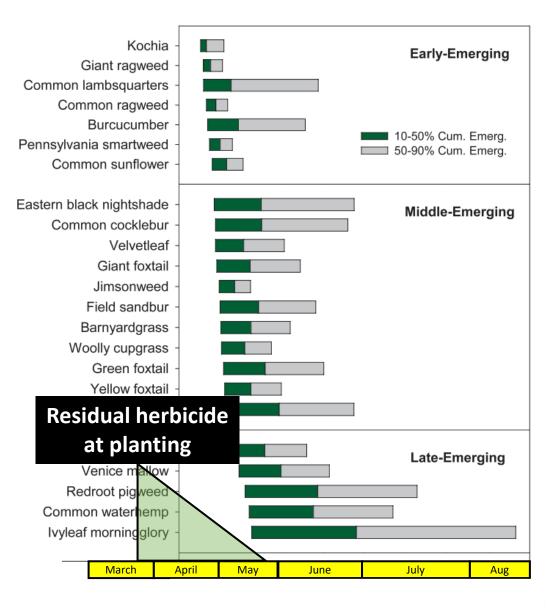
Comparison of a plot not receiving a PRE herbicide (left) and a plot receiving a PRE herbicide with flumioxazin (right). Photo: Purdue Weed Science


- Optimal conditions for emergence
- Residual herbicide available over time

Werle, R., Sandell, L. D., Buhler, D. D., Hartzler, R. G., & Lindquist, J. L. (2014). **Predicting Emergence of 23 Summer Annual Weed Species**. *Weed Science*, 62(2), 267–279. https://doi.org/10.1614/ws-d-13-00116.1


- Optimal conditions for emergence
- Residual herbicide available over time

Werle, R., Sandell, L. D., Buhler, D. D., Hartzler, R. G., & Lindquist, J. L. (2014). <u>Predicting Emergence of 23 Summer Annual Weed Species</u>. *Weed Science*, 62(2), 267–279. https://doi.org/10.1614/ws-d-13-00116.1


- Optimal conditions for emergence
- Residual herbicide available over time

Werle, R., Sandell, L. D., Buhler, D. D., Hartzler, R. G., & Lindquist, J. L. (2014). **Predicting Emergence of 23 Summer Annual Weed Species**. *Weed Science*, 62(2), 267–279. https://doi.org/10.1614/ws-d-13-00116.1

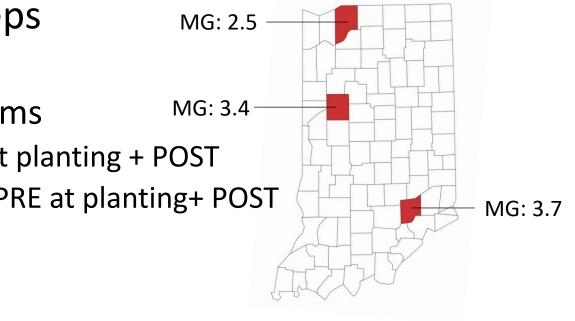
- Optimal conditions for emergence
- Residual herbicide available over time

Werle, R., Sandell, L. D., Buhler, D. D., Hartzler, R. G., & Lindquist, J. L. (2014). <u>Predicting Emergence of 23 Summer Annual Weed Species</u>. *Weed Science*, 62(2), 267–279. https://doi.org/10.1614/ws-d-13-00116.1

Hypotheses and Objective

• Hypotheses:

- Earlier planting dates will result in greater soybean yield in comparison with later planting dates due to extended growing season
- POST only herbicide programs will result in greater weed density in comparison with PRE + POST programs due the layer of residual herbicide
- Early planting combined with preemergence herbicides will result in lower soybean stands due to crop injury


• Objective:

Evaluate the effect of planting dates and herbicide programs on soybean stand, weed density, weed biomass, and soybean yield

Materials and Methods

- Trial design
 - Northern, West-central, and Southeast Indiana
 - Randomized complete block design
- 12 treatments, 4 reps
 - 4 Planting dates
 - 3 Herbicide programs
 - Full rate PRE at planting + POST
 - Reduced rate PRE at planting+ POST
 - POST only

Materials and Methods

- Northern (N)
 - Conventional tillage
 - 6 x 91m plot
 - 76 cm row spacing
 - 346,000 ha⁻¹ planting population
 - West-central (WC)
 - No-till
 - 6 x 30m plot
 - 76 cm row spacing

Weed

346,000 ha⁻¹ planting population

- Southeast (SE)
 - Conventional tillage
 - 6 x 91m plot
 - 76 cm row spacing
 - 320,000 ha⁻¹ planting population

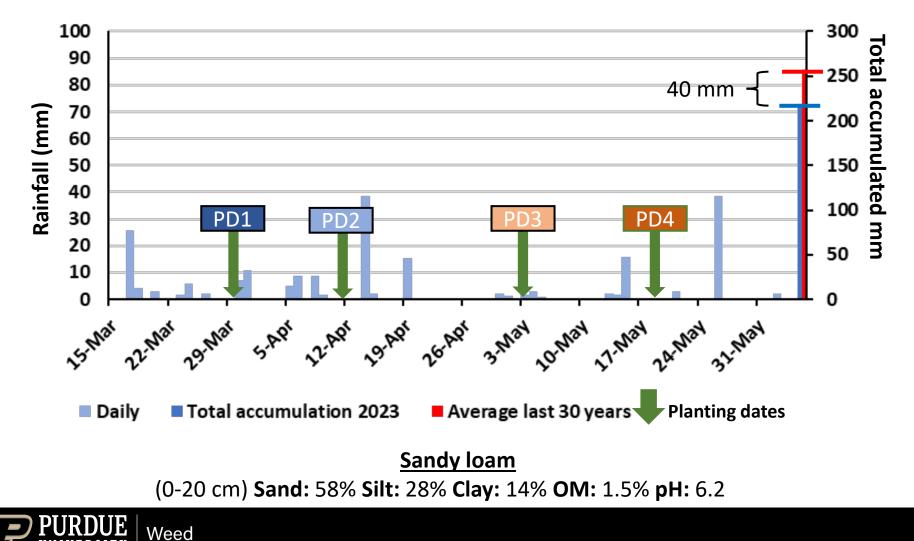
 1 glyphosate 1260 ae/ha + 2,4-D choline 1070 g ai/ha + ammonium sulfate 2.5% V/V 2 planting dates 3 and 4 for all sites receive a burndown application before planting 3 seeds/ha

Herbicide Programs

	PRE		POST (g ai/ae ha ⁻¹)
	Reduced (g ai ha⁻¹)	Full (g ai ha⁻¹)	
Northern	pyroxasulfone 50	pyroxasulfone 75	glyphosate 1260
Northern	flumioxazin 39	flumioxazin 59	glufosinate 656
West-central	pyroxasulfone 34 flumioxazin 27 chlorimuron 7	flumioxazin 43	glufosinate 656 2.4-D choline 1070 glyphosate 1260
Southeast	pyroxasulfone 41 flumioxazin 32 chlorimuron 9	pyroxasulfone 61 flumioxazin 48 chlorimuron 13	glyphosate 1260 2.4-D choline 1070 pyroxasulfone 23

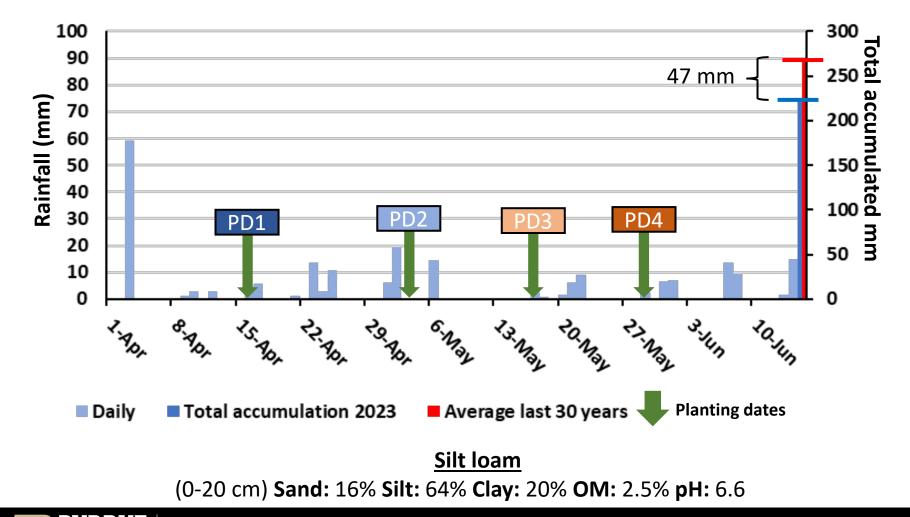
- All the POST applications with glyphosate, 2,4-D, or glufosinate are mixed with ammonium sulfate at 2.5% V/V
- Treatments with only POST application at southeastern site not included pyroxasulfone
- The southeastern site received an additional application of glufosinate following the initial POST application
- Post only programs at southeastern site was add a 2nd application with glufosinate 882 g ai ha⁻¹

Herbicide Programs


	PRE		POST (g ai/ae ha ⁻¹)
	Reduced (g ai ha⁻¹)	Full (g ai ha⁻¹)	
Northern	pyroxasulfone 50	pyroxasulfone 75	glyphosate 1260
Northern	flumioxazin 39	flumioxazin 59	glufosinate 656
West-central	pyroxasulfone 34 flumioxazin 27 chlorimuron 7	flumioxazin 43	glufosinate 656 2.4-D choline 1070 glyphosate 1260
Southeast	pyroxasulfone 41 flumioxazin 32 chlorimuron 9	pyroxasulfone 61 flumioxazin 48 chlorimuron 13	glyphosate 1260 2.4-D choline 1070 pyroxasulfone 23

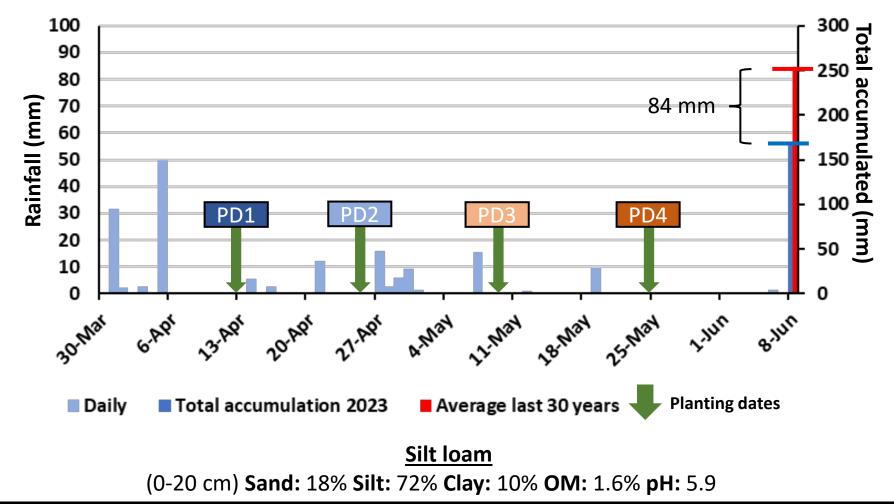
- All the POST applications with glyphosate, 2,4-D, or glufosinate are mixed with ammonium sulfate at 2.5% V/V
- Treatments with only POST application at southeastern site not included pyroxasulfone
- The southeastern site received an additional application of pyroxasulfone following the initial POST application
- Post only programs at southeastern site was add a 2nd application with glufosinate 882 g ai ha⁻¹

Soil and Weather Conditions N IN


Rainfall

0

Soil and Weather Conditions WC IN

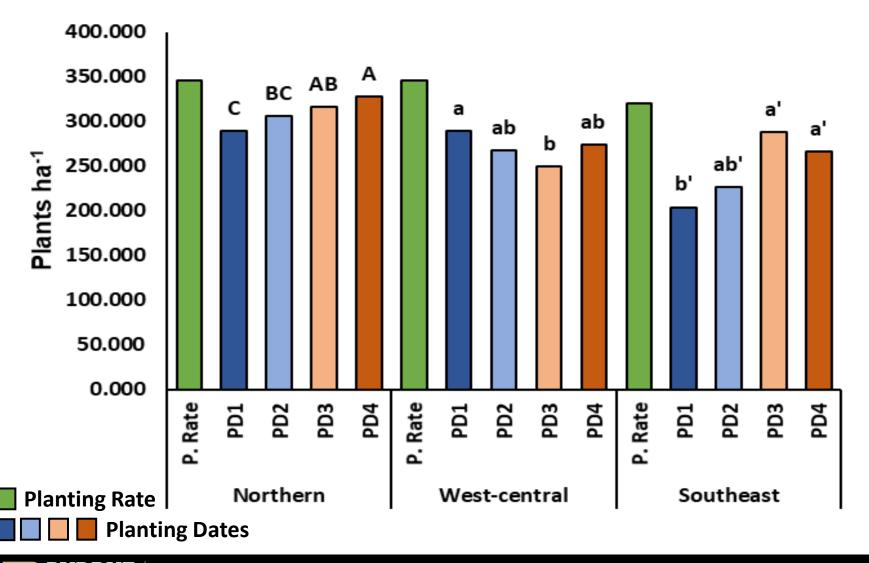

Rainfall

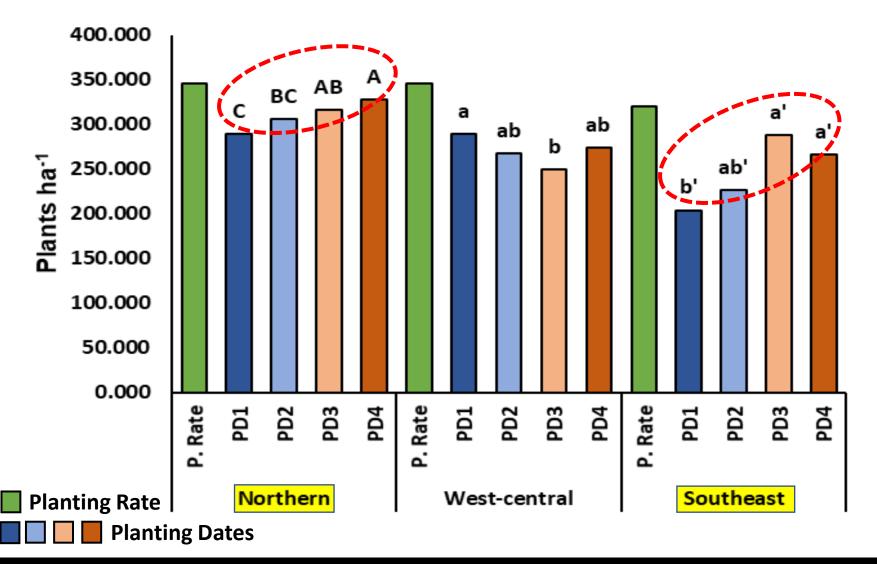
Weed

Soil and Weather Conditions SE IN

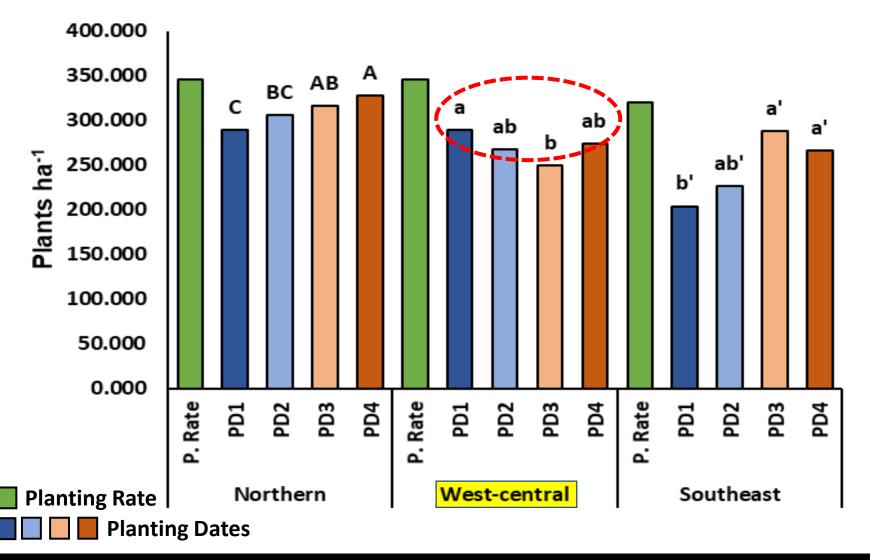
Rainfall

Data Collection and Analysis


- Soybean stand counts at V3 stage
- Weed counts (plants m⁻²) at 14 days after last POST application
- Weed biomass (g m⁻²) of most predominant species
- Soybean yield (kg ha⁻¹)
- Analysis of Variance (ANOVA) using "aov" function in R language (version 4.2.1) and mean separation with Tukey's HSD test ($\alpha \le 0.05$)


Results

Soybean Stand at V3 stage



Soybean Stand at V3 stage

Soybean Stand at V3 stage

	AŁ	butilon th	neophra:	Ambrosia trifida				
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4
Full PRE	0.3b	0.3b	0b	0b	0.8	0.3	0	0
Reduce PRE	1.3b	0.3b	0b	0b	0.17	0.17	0	0
Only POST	3.6a	0.8b	0b	0b	0.8	0.3	0	0.3
x	_				0.6A	0.3AB	OB	0.1AB

	Abutilon theophrasti				Ambrosia trifida			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4
Full PRE	0.8bc	0.2bc	Oc	Oc	1.1	0.5	0	0
Reduce PRE	2.2ac	0.4bc	Oc	Oc	0.6	0.2	0	0
Only POST	14.0a	4.1ab	Oc	Oc	2.8	0.9	0	0.5
x	_	—	—	—	1.3A	0.5AB	OB	1.3AB

	Al	butilon th	neophra:	sti	Ambrosia trifida			
Plants m ⁻² (14 DAT)	PD1	PD1 PD2 PD3 PD4				PD2	PD3	PD4
Full PRE	0.3b	0.3b	0b	0b	0.8	0.3	0	0
Reduce PRE	1.3b	0.3b	0b	0b	0.17	0.17	0	0
Only POST	3.6a	0.8b	0b	Ob	0.8	0.3	0	0.3
x					0.6A	0.3AB	OB	0.1AB

Abutilon theophrasti						Ambrosia trifida			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4	
Full PRE	0.8bc	0.2bc	Ос	Ос	1.1	0.5	0	0	
Reduce PRE	2.2ac	0.4bc	Oc	0c	0.6	0.2	0	0	
Only POST	14.0a	4.1ab	Ос	Ос	2.8	0.9	0	0.5	
x	_	_	_		1.3A	0.5AB	OB	1.3AB	

	Al	butilon th	neophra:	sti	Ambrosia trifida			
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4
Full PRE	0.3b	0.3b	0b	0b	0.8	0.3	0	0
Reduce PRE	1.3b	0.3b	0b	0b	0.17	0.17	0	0
Only POST	3.6a	0.8b	0b	0b	0.8	0.3	0	0.3
x					0.6A	0.3AB	OB	0.1AB

Abutilon theophrasti					Ambrosia trifida			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4
Full PRE	0.8bc	0.2bc	Oc	Oc	1.1	0.5	0	0
Reduce PRE	2.2ac	0.4bc	Oc	Oc	0.6	0.2	0	0
Only POST	14.0a	4.1ab	Oc	Oc	2.8	0.9	0	0.5
x	_	_	—	—	1.3A	0.5AB	OB	1.3AB

	AŁ	neophras	Ambrosia trifida					
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4
Full PRE	0.3b	0.3b	0b	0b	0.8	0.3	0	0
Reduce PRE	1.3b	0.3b	0b	0b	0.17	0.17	0	0
Only POST	3.6a	0.8b	0b	0b	0.8	0.3	0	0.3
Īx	_	_	_	_	0.6A	0.3AB	OB	0.1AB

	Abutilon theophrasti				Ambrosia trifida			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4	PD1	PD2	PD3	PD4
Full PRE	0.8bc	0.2bc	Oc	Oc	1.1	0.5	0	0
Reduce PRE	2.2ac	0.4bc	Oc	Oc	0.6	0.2	0	0
Only POST	14.0a	4.1ab	Oc	Oc	2.8	0.9	0	0.5
x	—	—	—	—	1.3A	0.5AB	OB	1.3AB

	Setaria faberi								
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4					
Full PRE	4.1	6.6	0	0					
Reduce PRE	15.5	3.5	0	0					
Only POST	6.7	12.5	0	0					
Tx	8.7a	7.5a	0b	0b					

Setaria faberi

Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0.8	0.1	0	0
Reduce PRE	0.4	0.7	0	0
Only POST	0.2	0.7	0	0
Т х	0.3a	0.3a	0b	0b

	Setaria faberi						
Plants m ⁻² (14 DAT)	PD1	PD1 PD2 PD3 PD4					
Full PRE	4.1	6.6	0	0			
Reduce PRE	15.5	3.5	0	0			
Only POST	6.7	12.5	0	0			
Тх	8.7a	7.5a	Ob	0b			

Setaria faberi

			<u> </u>	
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0.8	0.1	0	0
Reduce PRE	0.4	0.7	0	0
Only POST	0.2	0.7	0	0
x	0.3a	0.3a	0b	0b

	Predominant weeds			
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0b	1.2b	0b	0b
Reduce PRE	0b	0.5b	0b	2.8b
Only POST	4.3ab	26.0a	0b	0b
Тх	—	_	_	_

	Predominant weeds			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0	0.6	0	0
Reduce PRE	0	0.2	0	0.1
Only POST	0.3	1.1	0	0
x	0.1ab	0.6a	0b	Ob

Predominant weeds:

Carpetweed (*Mollugo verticillate*) Yellow foxtail (*Setaria pumila*) Waterhemp (*Amaranthus tuberculatus*) Ivyleaf morningglory (*Ipomea hederacea*)

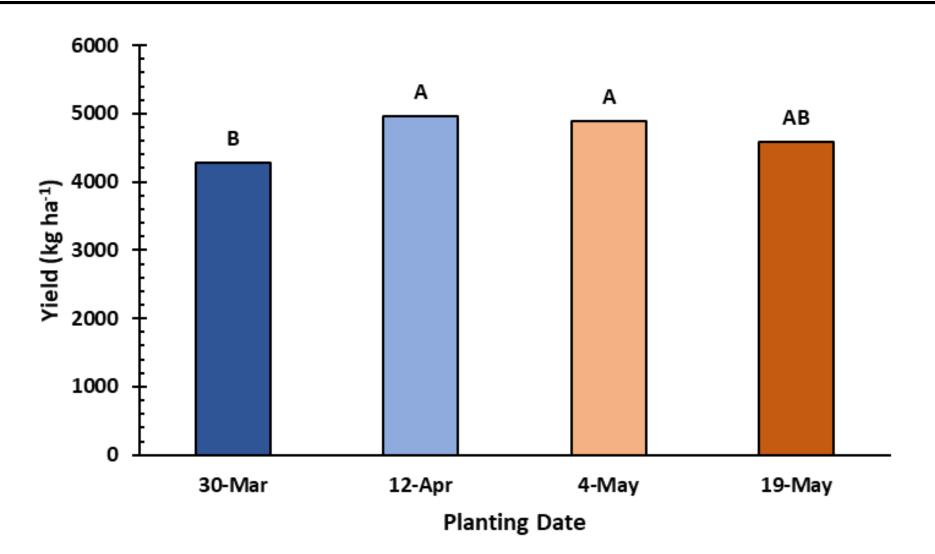
	Predominant weeds			
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0b	1.2b	0b	0b
Reduce PRE	0b	0.5b	0b	2.8b
Only POST	4.3ab	26.0a	<u>0b</u>	0b
x	_	_		

	Predominant weeds			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0	0.6	0	0
Reduce PRE	0	0.2	0	0.1
Only POST	0.3	1.1	0	0
ĪX	0.1ab	0.6a	Ob	0b

Predominant weeds:

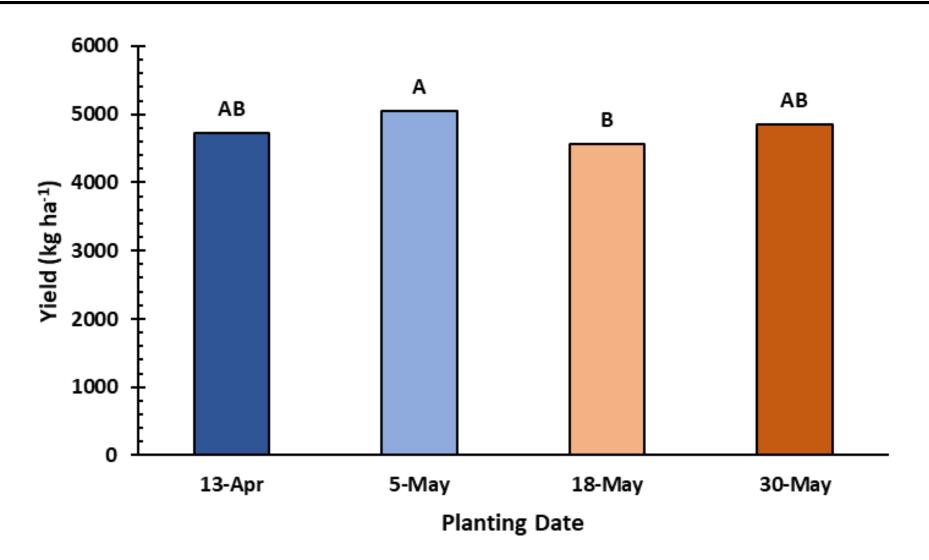
Carpetweed (*Mollugo verticillata*) Yellow foxtail (*Setaria pumila*) Waterhemp (*Amaranthus tuberculatus*) Ivyleaf morningglory (*Ipomea hederacea*)

	Predominant weeds			
Plants m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0b	1.2b	0b	0b
Reduce PRE	0b	0.5b	0b	2.8b
Only POST	4.3ab	26.0a	0b	0b
x	_			

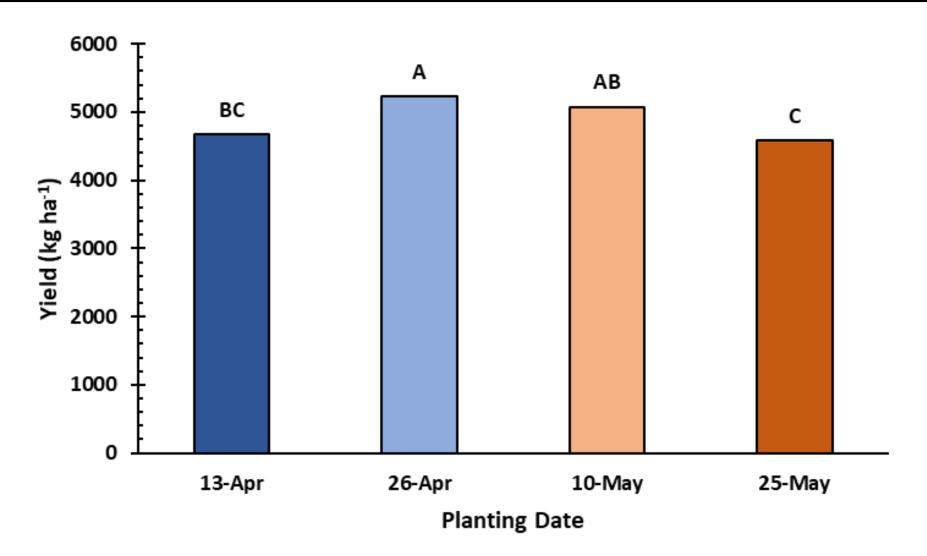

	Predominant weeds			
Biomass g m ⁻² (14 DAT)	PD1	PD2	PD3	PD4
Full PRE	0	0.6	0	0
Reduce PRE	0	0.2	0	0.1
Only POST	0.3	1.1	0	0
Тх	0.1ab	0.6a	0b	0b

Weed

Predominant weeds:


Carpetweed (*Mollugo verticillate*) Yellow foxtail (*Setaria pumila*) Waterhemp (*Amaranthus tuberculatus*) Ivyleaf morningglory (*Ipomea hederacea*)

Soybean Yield N IN



Soybean Yield WC IN

Soybean Yield SE IN

Conclusions

- Preemergence herbicides applied at cold temperatures didn't reduce soybean stands
- Weed density tended to be higher in some early planting dates with treatments that did not have residual herbicides
- Soybean can compensate yield for the reduced plant population from different planting dates
- Soybean yield was affected by planting date, and the lack of rainfall during critical periods of crop development may have been the most decisive factor to reduce yield

Implications

- Herbicide program needs to be selected to the according most predominant weed species
- Reduced soybean stand by early planting does not necessarily result in reduced soybean yield if stands stay over 200,000 plants ha⁻¹

Future Research

- Repeat in 2024
- Continued investigation of the interaction of planting dates and herbicide programs on weed management and soybean yield
- Investigate the influence of temperature on preemergence herbicide degradation in different soil types

Acknowledgments

Thanks, Questions?

