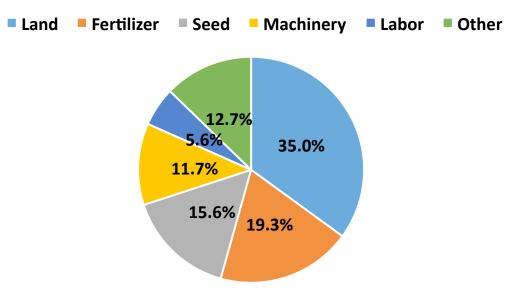
Reducing Corn Production Costs in 2016

Bob Nielsen, Professor, Purdue Dept. of Agronomy


Jim Camberato, Professor, Purdue Dept. of Agronomy

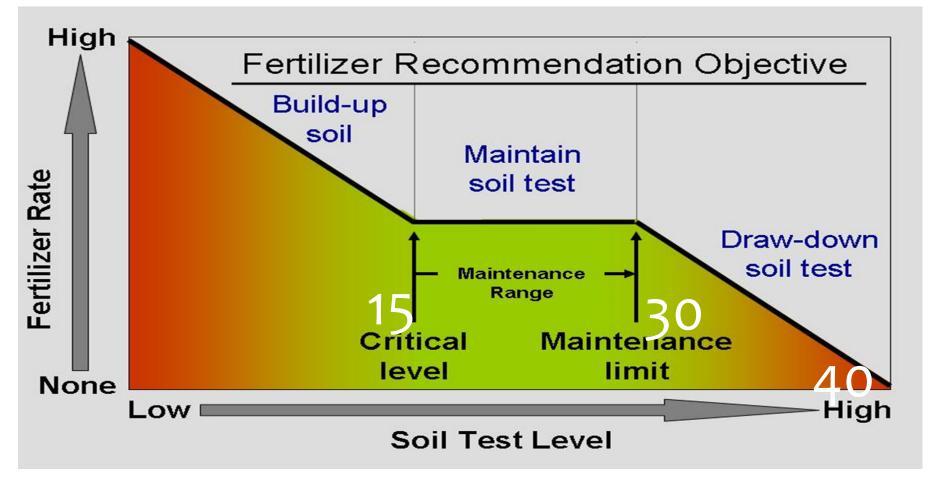
James Mintert, Professor & Director, Center for Commercial Agriculture

Michael Langemeier, Professor & Assoc. Director, Center for Commercial Agriculture

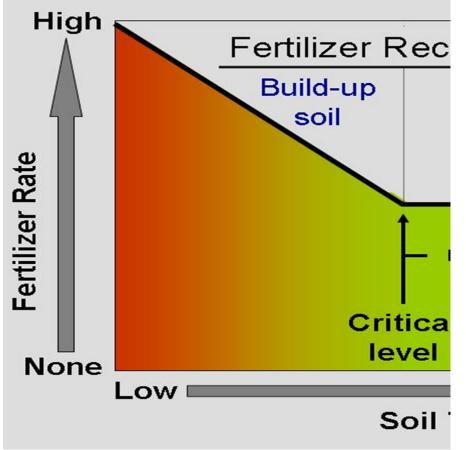
Center for Commercial Agriculture

Cost Shares for Corn in West Central Indiana, 2015

Commercial Agriculture

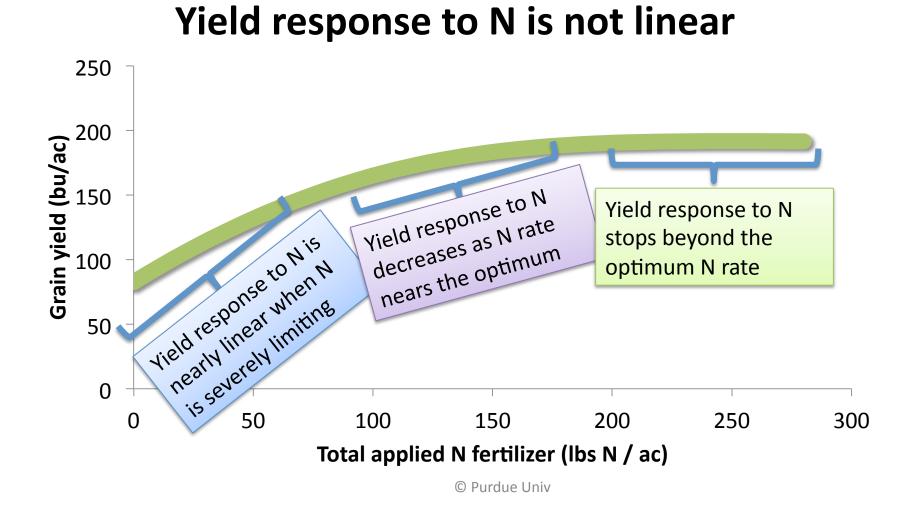

Rotation Corn; Costs per Bushel in 2015 and 2016 Budgets

Item	2015	2016	Percent Change
Fertilizer	\$0.89	\$0.70	-20%
Dryer and Machinery Fuel	\$0.30	\$0.21	-30%
Total Variable Cost	\$2.70	\$2.42	-10%
Total Cost	\$4.98	\$4.57	-8%
Corn Price	\$3.80	\$3.50	-8%

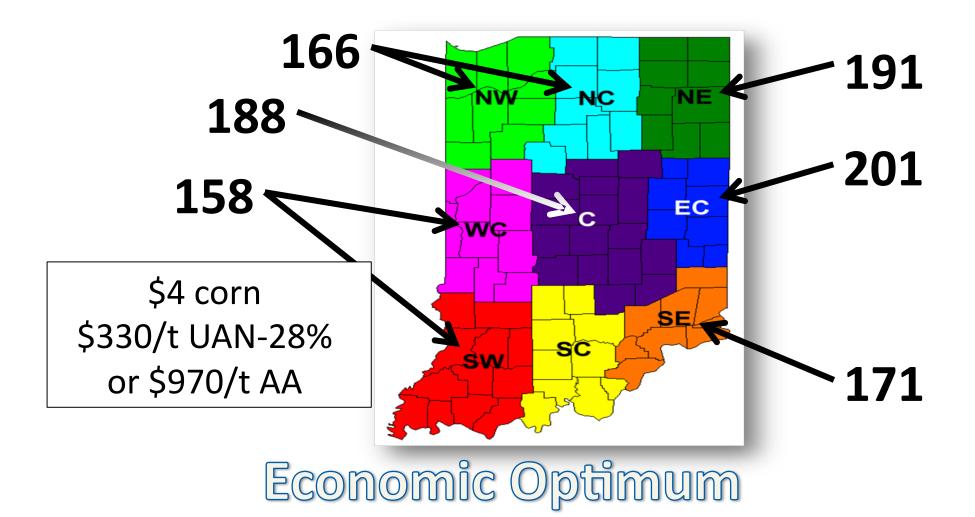


Center for Commercial Agriculture

Soil test P (ppm) assoc. with limits for corn and soybean


Maximize profit this year

- About 50 lb nutrient/acre should maximize profit at upper end of LOW
- and 100 lb nutrient/acre at lower end of LOW


Nitrogen rate rec.

- Recs. apply to efficient timings and placement of N
- N Loss Risks are higher if:
 - -Fall or early spring anhydrous
 - -Early spring liquid N
 - -Surface-applied urea

Economic optimum N rate

- Most profitable N rate over time, not every single year
- Opt. N rates in any situation can vary plus or minus 30 to 40 lb N/acre
- Recs. are based on corn after soybean trials (add 40-50 lb N/acre more for corn after corn)
- Varies with price of fertilizer and grain

Economic rec's for corn/soybean in WC/SW Indiana

Westcentral & southwest Indiana Grain price					rice	+40-50 for C/C		
N cost	\$2.50	\$3.00	\$3.50	\$4.00	\$4.50	\$5.00	\$5.50	
\$0.30	163	166	169	171	172	173	174	
\$0.40	156	161	164	166	168	170	171	
\$0.50	150	155	159	162	164	166	168	
\$0.60	143	150	154	158	161	163	165	
\$0.70	136	144	150	154	157	160	162	
\$0.80	130	139	145	150	153	156	159	

Based on 38 field-scale trials conducted 2006-2014. These rates assume N management practices that minimize the risk of N loss prior to plant uptake.

Nitrogen guidelines

Purdue University Department of Agronomy

Applied Crop Research Update

Updated February 2015 URL: http://www.kingcorn.org/news/timeless/NitrogenMgmt.pdf

Nitrogen Management Guidelines for Corn in Indiana

Jim Camberato¹ and RL (Bob) Nielsen Agronomy Department, Purdue Univ., West Lafayette, IN

9-YEAR SUMMARY OF CORN RESPONSE TO NITROGEN FERTILIZER

This report summarizes the yield response of rotation corn to fertilizer nitrogen (N) rate in field-scale trials conducted around the state of Indiana since 2006. These results are

http://www.agry.purdue.edu/ext/corn/news/ timeless/NitrogenMgmt.html

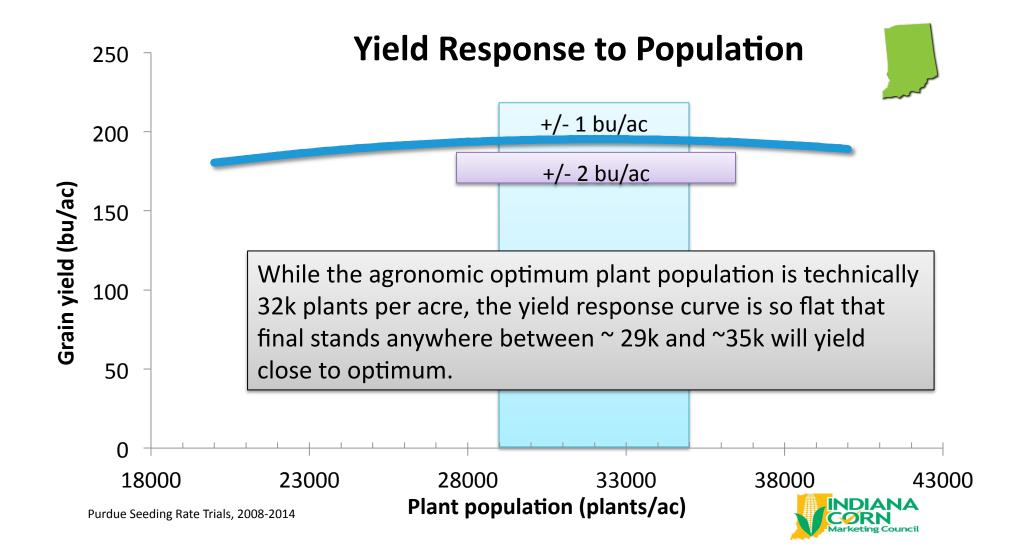
Transgenics or not?

- Seed costs can be reduced by using less expensive hybrids that do not contain transgenic traits (aka non-GMO hybrids).
 - Upwards of \$100 savings per 80k unit.
 - At 34,000 seeds per acre, translates to seed cost savings upwards of \$43/acre.

© Purdue Univ

Hybrid selection is not simply about genetic yield potential

- But, also the ability of hybrids to perform consistently well across a wide range of growing conditions (i.e., stress tolerance).
- Tolerance to a wide array of stresses is important because we cannot accurately forecast next year's growing conditions.


© Purdue Univ

Center for Commercial Agriculture

Most Effective Indicator of Hybrid Stress Tolerance:

- Hybrid performance in as many variety trials as you can find within a given geographic region.
- Multiple trials hopefully provide a range of growing conditions that your fields may experience in the future.
- Look for hybrids that consistently yield near the top of the majority of the trials.

JE Center for T X Commercial Agriculture

Bottom line on plant population

- Our research: Two "sweet spots" for plant population for corn in Indiana.
 - Productive soils: Low 30's FINAL stand
 - Challenging soils: Mid 20's FINAL stand
- Our research: Variable rates not widely beneficial for most fields in Indiana.
- Economic rates are at least several thousand less than agronomic rates.

Online summary...

www.kingcorn.org/news/timeless/SeedingRateGuidelines.pdf

Purdue University Department of Agronomy

Applied Crop Production Research Update

Updated January 2015 URL: http://www.kingcorn.org/news/timeless/SeedingRateGuidelines.pdf

Yield Response of Corn to Plant Population in Indiana¹

RL (Bob) Nielsen, Jason Lee, & Jim Camberato Agronomy Department, Purdue University West Lafayette, IN 47907 Nielsen's email: <u>mielsen@purdue.edu</u>

