

Are Autonomous Farm Machines Economically Ready Yet?

By Chad Fiechter and Josh Strine

Autonomous farm machinery is advancing quickly — but is it ready to pencil out on commercial grain farms?

Autonomous machinery continues to draw attention as a potential solution to labor constraints and operational efficiency challenges in production agriculture. A recent study evaluates whether large-scale autonomous machinery systems are economically competitive with conventional, human-operated equipment under current conditions.

The analysis used a farm-level optimization framework (*the old Purdue Crop Linear Programming Model (PCLP)*) to evaluate how autonomous machinery would fit into a realistic Midwestern corn/soybean farm. Instead of focusing only on engineering performance, the study looked at the full business picture, including:

- Field efficiency of autonomous machines
- Initial hardware purchases
- Ongoing software or subscription fees
- Labor requirements and wage rates
- Machinery and whole-farm logistics

These modeling choices allowed autonomous systems to be evaluated alongside traditional machinery within the context of overall farm profitability and operational constraints.

KEY FINDING: LABOR COSTS ARE THE TIPPING POINT

Results indicate that, given today's technology performance and cost structures, autonomous machinery is **generally not yet cost-competitive** with conventional equipment on commercial grain farms. Higher capital costs and recurring technology fees currently offset labor savings in most baseline scenarios.

Labor availability and cost ultimately determine whether autonomy pencils out. When labor cannot be secured, autonomous machinery offers a viable alternative to idling acres. But for farms with access to hired labor, current autonomous systems remain difficult to justify economically. Under today's performance assumptions, labor wages would need to rise above **\$140 per hour** before autonomous machinery generates higher returns than conventional equipment.

LIKELY PATH OF ADOPTION

Rather than immediate, whole-farm substitution, the findings point toward a more gradual adoption path. Autonomous systems may initially be justified for operations willing to trade

some financial return for lifestyle or management benefits. Beyond these cases, economic viability is more likely to emerge in specific field operations where autonomy addresses particular constraints. Under current conditions, individual operators should carefully evaluate the economic tradeoffs.

In the future, improvements in operating efficiency and reductions in software or service fees will improve the economic outlook.

BROADER FARM MANAGEMENT IMPLICATIONS

The study emphasizes that autonomous machinery decisions extend beyond equipment replacement. Adoption has implications for:

- Machinery investment structure
- Labor strategy and workforce management
- Crop diversification
- Long-term farm scalability

For Midwest corn and soybean farms, the question is less “Will autonomy come?” and more “When will the autonomy performance and costs align with our labor situation and growth plans?”

ADDITIONAL RESOURCES

The full academic article provides detailed modeling assumptions, cost structures, and sensitivity analysis.

Read the research article: <https://doi.org/10.1016/j.atech.2025.101599>

A companion episode of the **Purdue Commercial AgCast** features the authors discussing the methodology, key findings, and practical implications for farm managers.

Listen to the podcast, Episode 206: <https://purdue.ag/agcast206>