

Emerging Agricultural Technology, Labor Markets, and Societal Impacts

Dr. Marshall A. Martin Purdue University West Lafayette, Indiana

Senior Associate Director of Agricultural Research, Assistant Dean of Agriculture, and Professor of Agricultural

Economics

December 6, 2016

Beck Agricultural Center

PURDUE AGRICULTURE A Century of Change

- Population growth and geographic relocation
- Economic development and growth
- Emerging global society
- Public policy
- Investments in research and technology transfer

PURDUE AGRICULTURE Let's set the stage

• The United States- 1900 to today

U.S. Economic Development

PURDUE AGRICULTURE Globalization

- Increased trade
- Instantaneous communication
- Electronic transfer of money
- Weather satellites

- reallocation of resouces
- greater availability of good and services
- increased competition

PURDUE AGRICULTURE Public Policy Environment

Government legislation and regulations- more regulations

Private sector decisions-consolidation

• Producer and consumer choices-more concerns about how food is produced

Investments in Agricultural Research and Technology Transfer

Public sector

• Private sector

Increase in private relative to public investment in agricultural research

The Non-Farm Sector Performance

Decline in agriculture, stagnant in industry, and growing in service sector

Labor Productivity and Employment

Trends in U.S. Manufacturing Productivity, Output, and Employment: 1987-2010

Source: U.S. Department of Labor: Bureau of Labor Statistics, "Productivity and Costs: Manufacturing Sector," 1987–2010, in Data Link Express, Haver Analytics. Note: Increased productivity, stagnant output growth, and lower employment

PURDUE AGRICULTURE Manufacturing Jobs by Education Level

Shift to higher educated employees

PURDUE AGRICULTURE Employment by Skills

Middle class with lower skills face jobs losses and stagnant wages

⊖ Hollowing out the middle

Research by MIT economist David Autor shows that between 1980 and 2005, the middle class suffered both in share of jobs and in wage growth. The top chart shows share of employment held by workers of different skill levels; the bottom shows changes in wages.

\odot The mix of jobs

The fastest-growing jobs in the U.S. from 2000 to 2010 reflect the demand for highly technical skills and those lower-skill jobs that are hard to automate. Highly routine jobs are especially vulnerable to automation.

FASTEST-GROWING JOBS

③ Software engineers-applications
③ Computer support workers
③ Software engineers-systems
④ Network administrators
⑤ Network systems analysts
⑤ Desktop publishers
⑦ Database administrators
⑤ Personal and home care aides
⑥ Computer systems analysts
⑩ Medical assistants

Not just factory workers!

A Century of Technological Change in U.S. Agriculture

PURDUE AGRICULTURE Mechanization of Wheat Harvest

1950s (2 A/Hr)

1900s

DUE

Mechanization of Corn Harvest

Today (15 A/Hr)

PURDUE AGRICULTURE Cotton Harvesting

1950s

PURDUE UNIVERSITY

PURDUE AGRICULTURE

Wage Rates, Man-Hours, Value of Production and Labor's Relative Share for U.S. Cotton Production: 1952-1969

Year	Real Wage Rate/Hour	Man-hours Cotton-Labor (millions)	Real Value Output Includ- ing Acreage Diversion Payments (\$ millions)b/	Labor Shar <u>e</u> / (S _L)
1952	0.5710	1655	2446.4	0.3863
1953	0.5978	1609	2736.8	0.3515
1954	0.5905	1269	2407.3	0.3113
1955	0.6043	1235	2655.2	0.2811
1956	0.6335	1074	2389.8	0,2847
1957	0.6253	818	1787.8	0.2861
1958	0,6220	769	2015.1	0.2374
1959	0.6330	911	2586.2	0.2230
1960	0.6433	831	2861.7	0.1868
1961	0.6540	772	2677.6	0.1886
1962	0.6603	679	2648.6	0.1693
1963	0.6720	647	2816.0	0.1544
1964	0.6958	573	2614.0	0.1525
1965	0.7155	483	2212.3	0.1562
1966	0.7405	309	1324.6	0.1727
1967	0.7935	242	1397.3	0.1374
1968	0.8308	275	1446.7	0.1579
1969	0.8615	279	1045.2	0.2230

Note: Real wages increased, but hours of labor and labor's share declined

Martin, Marshall A. and Joseph Havlicek, Jr., 1977. Technological Change and Labor's Relative Share: The Mechanization of U.S. Cotton Production, <u>Southern Journal of Agricultural Economics</u>, 9(2):137 141.

PURDUE AGRICULTURE Fruit Harvest

Weed Control

Milking Cows

1900s

1950s

PURDUE AGRICULTURE U.S. Labor Productivity

Farm labor productivity growth faster than nonfarm

JE

ERSITY

NIV

Relative Factor Endowments and Technological Change Theory
The Hayami-Ruttan model of induced innovation

U.S. with 35 people per square mile vs Japan with 348 people per square mile

Historically, Japan has had a relative abundance of labor and U.S. has had a relative abundance of land

Induced Innovation over past Century

- Economic incentives for mechanization in U.S. due to relative labor scarcity
- Economic incentives for yield increasing technologies in Japan due to relative land scarcity

PURDUE AGRICULTURE Labor Market Theories

Pull (economic perspective)

Improved work and quality of life opportunities in urban areas

Rural urban migration

Better jobs and salaries

Health care

Education

Labor Market Theories

Push (Social perspective)

Social pressures and poor living conditions in rural areas

Rural urban migration

Substandard housing Lack of quality health services Limited educational opportunities

Labor Market Theory

Substituion of Capital for Labor

Agricultural Technology Adoption: The Treadmill Theory

Farm

- AFC Average Fixed Costs
- AVC Average Variable Costs
- ATC Average Total Costs
- MC Marginal Costs

- Market
- S Market Supply D - Market Demand

Agricultural Technology of Tomorrow

Genomics

Phenotyping

Bioinformatics

Agricultural Technology of Tomorrow

Precision Agriculture

Big Data

Driver-less tractors

Job Loss: Trade Vs Technology

- International trade both expands and reduces employment depending on the sector
 - Fewer low skilled Jobs, but demand for some higher skilled employees

Automotive sector

Job Loss: Trade Vs Technology

- International trade increases competition and offers large choice of cheaper goods
 - Imported consumer goods and intermediary inputs

Imported goods

Job Loss: Trade Vs Technology

- International trade increases U.S. exports
 - Export of U.S. agricultural products

Soybean exports 45% U.S. production

Top U.S. Pork Export Markets in 2015				
Top markets in total VALUE exported:				
Japan set and set and set and set				
Mexico				
China/Hong Kong The The The S778.8 million				
Canada 📻 🥐 🔽 S700.4 million				
Korea 💏 💏 \$470.3 million				
Top markets in total POUNDS exported:				
Mexico 1.585 billion pounds				
Japan The Contract of B95.5 million pounds				
Canada 💏 🥂 747.5 million pounds				
China/Hong Kong				
Korea 🚝 🧮 369.3 million pounds				
Source: USDA statistics compiled by the USMEF U.S. PORK				

Pork exports 24% U.S. production

Agricultural exports

Job Loss: Trade Vs Technology

- Technological change increases labor productivity, but requires new skills for many and may increase flow/quantity of product
 - more knowledge based than physical labor based
 - increased volume

Mail and package shipping

Job Loss: Trade Vs Technology

• Challenge is motivating, funding, and providing opportunities for retraining

Breakout Discussion

 What new skill sets will you need on your farm in next 5-10 years?

 How can society best prepare people for these future job opportunities in agriculture?

Breakout Discussion

 What jobs and skill sets do you expect to need in your community/county in next 5-10 years?

• How can society best prepare people for these careers in your county/community?

Questions

marshallmartin@purdue.edu

