
 1 

A Profile of Beach Use on the East Coast of the United States with Per Trip 

Values and Consumer Surplus Estimates for Day, Short Overnight,  

and Long Overnight Trips 

 

 

Abstract 

We provide a statistical profile of beach use on East Coast of the United States (beaches from Massachusetts to 

South Carolina) using survey data from a random sample of beach goers from the twenty states nearest to these 

beaches. We reported details on demographics and trip taking behavior and then provide a set of per trip values for 

day, short overnight, and long overnight trips. We also present consumer surplus access values by state. These are 

done in using a random utility model with alternative-specific-constant models for day, short overnight and long 

overnight model separately.  We also estimate a model that combines the trips and a second-stage model that allows 

us to explore the effect of specific attributes on beach use. And finally, we include a contingent behavior validity 

check. Per trip values for day, short overnight, and long overnight trips are $19, $91, and $333.    

 

1. Introduction  

The economic and cultural importance of outdoor recreation on beaches in the United States is 

well known. The National Oceanic and Atmospheric Administration reports that “[o]cean-based tourism 

and recreation contributes approximately $143 billion in gross domestic product to the national economy 

each year.”  Millions of visitors, day trippers and vacationers alike, annually indulge in a variety of 

activities ranging from pursuits directly tied to nature like fishing, birdwatching, and hiking to pursuits 

indirectly tied nature such as visiting boardwalks, shopping centers, museums, and restaurants.   Among 

beaches in the United States, those on the East Coast stand out as one of the more common destinations.  

We estimate that were 79 million day trips, 24 million short overnight trips (< 4 nights), and 15 million 

long overnight trips (> 4 nights) taken in 2015 to East Coast beaches – this includes beaches from 

Massachusetts to South Carolina. Together they make up 224 million visitor days. The count is from a 

survey we will describe later in the article, which includes visitors from the 20 states nearest to these 

beaches – excluding visitors from more distant states and foreign countries.  By way of comparison 5.5 

million people visited the Grand Canyon National Park in 2015 and 4.1 million visited Yellowstone 

National Park in 2015.   

https://coast.noaa.gov/states/fast-facts/tourism-and-recreation.html#:~:text=Ocean%2Dbased%20tourism%20and%20recreation%20contributes%20approximately%20%24143%20billion%20in,the%20national%20economy%20each%20year.
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The purpose of this article is to profile beach use on the East Coast and use a travel cost random 

utility maximization model to estimate per trip values for day, short overnight, and long overnight trips to 

the same beaches. These values are of use in many policy settings in coastal resource management – 

including impacts from climate change, damage assessment of oil spills and other hazardous episodes, 

managing the extent of beach nourishment projects, planning for beach retreat, documenting the effects of 

offshore wind farms and other infrastructure projects on beach use, and so forth.  In short, there is a long 

list of uses for these values in benefit transfers in benefit-cost analyses, natural resource damage 

assessments, and other priority setting decisions. In addition, the profile may be used in impact analyses 

and other local planning efforts and promote sustainable coastal management generally.   

 We use survey data assembled in 2015 originally for the purposes of estimating the impact of 

offshore wind turbines on beach use in our analysis (Parsons et al. 2020 and Parsons et al. 2021).  This is 

a follow-on analysis with the same data covers beach use at 275 ocean beaches from Massachusetts to 

South Carolina.  We have two functional samples: (1) 2050 respondents from the general population and 

(2) 1725 respondents from the beach going population. Both were drawn from the households living in 

the 20 states nearest to the East Coast beaches and both are weighted by GfK International such that they 

are probabilistic or ‘representative’ of the underlying population. About 35% of the general population 

visited at least one beach during the year. We use that figure as our participation rate.   

 The travel cost random utility model (Haab and McConnell, 2002, Chapter 9) has been applied to 

ocean beaches in many areas of the world, so we have a good foundation from which to work. Since our 

focus is on estimating per trip values, we confine our econometric analysis largely to 1725 participants in 

the data set and estimate an alternative-specific-constant (ASC) model (English et al. 2018). We report 

models separate day, short overnight, and long overnight trips, but also present an application following a 

recent argument in the literature that combines trips of different length into a single model.   

    Our paper is structured as follows. We begin with a review of the relevant literature, followed 

by a detailed description of our study design and model. Then we describe the survey and present a 
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profile of beach users from these data. Next, we present our econometric model and the results.  We also 

include a section on hypothetical beach closures as a demonstration of the model.  We conclude with a 

summary of our findings and implications. 

 Before we begin, we want to clarify how we are using the term “per trip value”.  There are two 

common usages. One is the per trip value computed from a RUM Model using the log-sum difference 

when one site is dropped from the choice set divided by coefficient on trip cost -- the monetized 

difference in the expected utility of a trip.  In this article we will refer to this as a “per choice occasion 

value”. It is the expected value of a trip to a given site. Since every beach in the choice set has a positive 

probability of a trip, the choice occasion value for every respondent for every beach is positive.   To put 

the per choice occasion value in per trip terms, we divide it by the probability of visiting the site -- the 

log-sum difference when one site is dropped from the choice set divided by the probability of taking a trip 

to the dropped site. The latter is synonymous with per trip values used from single-site models where one 

divides total seasonal consumer surplus (choice occasion surplus here) by the number of trips for a person 

(probability of taking a trip here) to arrive at a per trip value.  When we refer to a “per trip value” in this 

article, this is the variable we have in mind.  

 

2. Literature 

 Economists have been estimating travel cost random utility models of beach use for 50 years. 

Table 1 is a compilation of data sets used for estimating such models accompanied by publications using 

the data.  We will refer to these data sets in italics in this section. The US EPA funded two major data 

collection efforts early on for the purpose of measuring water quality benefits. These are the 1974 Boston 

Area data and 1983 Chesapeake Bay data (see Table 1). Binkley and Hanemann (1978), Hanemann 

(1978), and Feenberg and Mills (1980) use the 1974 Boston area data, which covered 30 beaches in the 

Boston and surrounding areas.  They focus on day trips and estimate recreational benefit of water quality 

improvements where water quality was based on physical properties of beaches, presence of litter and 
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maintenance frequencies. Bockstael et al. (1989) also applied RUM Model and focused on day trips to 12 

beaches using the 1983 Chesapeake Bay data.  They report choice occasion values of $1.08 per choice 

occasion per household for a 20% reduction in water pollution across all beaches.  Water pollution was 

defined by a nitrogen-phosphorous index. Hick and Strand (2000) use the same data set to investigate the 

implication of distance- and familiarity-based choice sets in a RUM Model, and discovered that using 

traditional distance-based choice sets can significantly bias welfare estimates if the majority of substitutes 

are unknown to respondents. 

Table 1: Beach Use Summary by Data Set  

Survey Data Set Published Articles Model Type Value in 

$2023 

 

1974 Boston Area 

 

Choice Set: 30 beaches 

Population: Boston Area residents 

Binkley and 

Haneman (1975) 
Logit model 1 (constant, 

distance, phosphorus) 

Logit model 2  

(Model 1 with coliform 

presence variable) 

Logit model 3 

 (Model 2 with color 

variable) 

94* 

 

135* 

 

 

76.02* 

Haneman (1978) Logit model (no TC 

variable) 

N/A 

Feenberg and Mills 

(1980) 

Logit model (no TC 

variable) 

11.62* 

Bockstael, 

Haneman and 

Strand (1984) 

N/A N/A 

Bockstael, 

Haneman and 

Kling (1999) 

First-stage GEV Model of 

choice among freshwater 

and saltwater beaches 

10.75 

1983 Chesapeake Bay 

 

Choice Set: 12 beaches 

Population: Beachgoers in 

Chesapeake Bay 

Bockstael, 

Haneman and 

Strand (1989) 

N/A N/A 

Haab and Hicks 

(1997) 
Mixed logit 1 (with fecal 

coliform variable only)  

 

Mixed logit 2 (model l 

with 

additional dummies) 

Endogenous choice set 

169.79 

 

 

 

113.02 

 

 

83.6 
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Hicks and strand 

(2000) 
Familiar set standard 

RUM 

 

Familiar set standard 

RUM  

(4-hour distance) 

 

Distance based standard 

RUM (1 - 3.5 hours range) 

 

44.91 

 

 

30.01 

 

 

 

[205.9; 

44.67] 

1987 New Bedford 

 

Choice Set: 5 beaches 

Population: 338 randomly selected 

beach users in New Bedford 

 

McConnell (1986) N/A N/A 

 

Haab and Hicks 

(1997) 

Mixed logit 1 (region 

Constants only) 

Mixed logit 2 (model 1 

with 

Additional dummies) 

 

Mixed logit 3 (model 2 

without distance 

variable) 

 

Endogenous choice set 1 

(with distance variable) 

 

Endogenous choice set 2 

(without distance 

variable) 

7.72 

 

 

38.87 

 

 

 

18.51 

 

 

 

20.33 

 

 

 

 

15.69 

1994 Florida 

 

Choice Set:297 beaches 

Population: Central Florida residents 

 

 

Environmental 

economics 

Research Group 

(1998) 

Nested logit (travel time 

to site only) 

 

Nested logit (travel time 

and beach time) 

 

Nested logit (travel time, 

beach time and non-beach 

time accounting for non-

beach-recreational 

activities) 

 

50.43 

 

 

38.04 

 

1.5 

 

 

1997 Mid-Atlantic 

 

Choice Set:62 NJ, DE, MD and VA 

beaches 

Population: Central Florida residents 

 

 

Parsons, Tomasi 

and Massey (1999) 

Standard logit all sites 

 

Nested logit familiar 

 

Nested logit unfamiliar 

 

Standard logit favorite 

54.24 

 

82.54 

 

54.24 

 

90.4 

 

Massey (2002) 

Multinomial logit 

 

39.64 

 

39.54 
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Multinomial logit with 

interactive variables 

 

Mixed logit 

 

Mixed logit with 

interactive variables 

 

 

17.31 

 

17.79 

 

Parsons (2003) Three-level nested logit 47.46 

Parsons and 

Massey (2003) 
Multinomial logit 

Mixed logit 

40.4 

21.57 

Haab and 

McConnell (2002) 

Nested logit 

Conditional logit 

23.73 

31.51 

Von Haefen, 

Phaneuf, and 

Parsons (2004) 

Monte Carlo Markov 

chain algorithm for 

Hicksian 

Consumer surplus 

estimates 

 

 

N/A 

von Haefan, 

Massey, and 

Adamowicz (2005) 

Hurdle model in choice 

experiment application 

 

N/A 
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1998 Lake Eri Data 

 

Choice Set: 15 beaches on Lake Eri 

Population: Ohia Lake Eri beach user 

 

Murray et al. 

(2001) 

Multinomial Logit (MNL) 17.63 

Yeh et al. (2006) Nested logit model 

(NML): 

Day trips 

Overnight Trips  

 

 

19.18 

89.45* 

1998 Costa Rica 

 

Choice set: 7 forested beaches 

Population:  Resident of Costa Rica 

 

Cutter et al. (2007) Nested logit model for 

all 

  

Swimmer &  

Hiker only  

142** 

   

 

83.3** 

1999-2000 Southern California  

 

Choice Set: 53 beaches 

Population: Households in Southern 

California 

Hanemann et. Al. 

(2004) 
 

Conditional logit 

20.81 

Hanemann, 

Pendleton, and 

Mohn (2005) 

 

Random parameters 

model 

 

9.71 

Hilger and 

Hanemann (2006) 
 

Finite mixture logit 

[2.71; -

84.23] 

Hilger and 

Hanemann (2008) 
 

Logit model 

20.81 

2000-2001 San Diego 

 

Choice Set: 31 beaches 

Population: Randomly chosen San 

Diego County residents 

Lew (2002) Multinomial logit-

Heckman 

 

Multinomial logit-HFS 

 

Nested multinomial logit-

Heckman 

 

Nested multinomial logit-

HFS 

20.03 

 

 

21.39 

 

20.97 

 

 

21.89 

Lew and Larson 

(2005a) 

Full site repeated nested 

logit.  

 

Aggregate sites repeated 

nested logit 

113.03 

 

 

124.20 

Lew and Larson 

(2005b) 

Two-step mixed logit  

 

Joint mixed logit 

17.13 

 

9.31 

Kuriyama, 

Hanemann and 

Hilger (2010) 

Latent segmentation Kuhn 

Tucker model 

N/A 
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2000 Australia Sunshine Coast 

 

Choice set: 5 beaches 

Population: Beachgoers of 

Queensland 

  

Blackwell (2007) Ordinary Least Square 

(OLS) 

 

Truncated Poisson 

 

Truncated Negative 

Binomial (TNB) 

62.11** 

 

 

49.04** 

 

119.95** 

2001 Texas Gulf of Mexico Coast 

 

Choice Set: 65 beaches 

Population: Residents living within 

200 miles of the Gulf of Mexico 

 

 

 

 

Parsons et.al. 

(2009) 

Multinomial Logit 

 

Mixed Logit 

79.7 

 

31.76 

 

 

Parsons and Kang 

(2010) 

  

 

   Mixed Logit 

 

43.04 

2009 North Carolina 

Choice set: Beach of 16 counties 

Outer Banks 

Population: Household of outer banks  

 

Lardry et al. (2012) Random effect Poisson  132.74 

2010 Delaware Bay 

 

Choice Set: 7 beaches 

Population: On-site survey of beach 

visitors  

 

Parsons et. al. 

(2013) 

Pooled single-site travel 

cost model 

46.57 

Johnston et al 

(2015) 

Used Parsons et.al. (2013) N/A 

2011 Northwest Florida 

 

Choice set: 7 beaches 

Population: Respondents residing in 

13 US states that constitute the 

primary domestic market for coastal 

tourism to Northwest Florida 

 

 

 

 

Whitehead et. al. 

(2016) 

Random Parameter 

count data travel cost 

model. 

 

 

Negative binomial count 

data travel cost model 

388.16 

 

 

 

 

 

423.44 

2011 US Coastal beach Area 

 

Choice Set: Shoreline counties in the 

Gulf of Mexico 

Population. Households who lived 

sufficiently far from the Gulf of 

Mexico that an overnight trip to the 

Gulf could be expected to have been 

planned in advance (outside of TX, 

LA, AR, MI, FL, GA, TN)  

 

 

 

 

 

 

 

 

Glasgow and Train 

(2018) 

 

 

 

 

 

 

 

Multinomial Logit 

 

 

 

 

 

 

 

451.99 

 

2011 Australia Gold Coast  

 

Choice Set: 4 Beaches 

Population: Beachgoers of selected 

Blackwell et al. 

(2013) 
Ordinary Least Square 

(OLS) 

 

Truncated Poisson 

.57** 

 

 

33.3** 

47.6** 
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beaches Truncated Negative 

Binomial (TNB) 

 

Zhang et al. (2015) Truncated Negative 

Binomial (TNB) 

19.47** 

2013 Southern California 

 

Choice Set: 31 Orange County 

beaches 

Population: adult residents of Orange 

County, CA 

 

 

 

 

Leggett et. al. 

(2018) 

Standard repeated nested 

logit with TC and Debris 

only  

 

Standard repeated nested 

logit with some site 

choice  

 

Standard repeated nested 

logit with all site choice 

variables  

 

Standard repeated nested 

logit with participation 

variables 

10.14 

 

 

 

10.31 

 

 

 

10.80 

 

 

 

35.71 

2013 Gulf Coast 

 

Choice set: Beaches of six state area 

Population: national sample: resident 

of 48 states 

local sample: TX, AL, FL, LA, MS, 

GA 

English et al. 

(2018) 

Nested logit model 108.95 

English et al. 

(2020) 

Nested logit model: 

Day trip 

 

Overnight trip 

 

Combined trip 

 

11.78 

 

435.95 

 

130.8 

* Estimated distance to the site instead of travel cost 

**TC is measured other than USD  

More recent applications for valuing water quality improvements include Murray et al.’s (2001) 

study using the 1998 Lake Erie data, which covers 15 beaches in Ohio.  Using day trip data, they estimate 

the value of reducing the number of beach advisories beaches at single beaches at $1.85 per trip per 

person and $27.93 per season per person. Yeh et al. (2006) use the same data set to model day and 

overnight trips simultaneously. They find a reduction of one beach advisory across all beaches with 

advisories is valued at $2.10 per trip per person for day trips and $6.45 per trip per person for overnight 

trips. Hilger and Hannemann (2008) used the finite mixture logit model (FML), an advanced variant of 

the RUM model for addressing systematic preference heterogeneity, in conjunction with the traditional 

conditional logit model using the 2000 Southern California data and estimate an increase in per trip beach 

recreation benefit of $5.71 and $1.23, respectively, for improving water quality of a letter grade grade 
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ranged from A+ to F, where letter grades are  measured by total coliform, fecal coliform, and 

enterococcus. Kuriyama et al. (2010) use the same data set to expand the latent segmentation technique to 

the Kuhn Tucker Model. They calculate the welfare loss resulting from a 20% decrease in water quality 

across 53 beaches to be between $1.73 and $16.77 per person per year. Lew (2002) included a water 

quality measure (on-site posting of water quality violations at the beach) in his RUM Model using the 

2000-1 San Diego data but find it is statistically insignificant.  

In addition to these multisite models, there are a number of studies that use single site models 

with contingent behavior data to measure the value of improvements in water quality for beach recreation. 

A prominent example is McConnell (1986), who used the 1986 New Bedford, MA data to estimate the 

value of a hypothetical elimination of PCB contamination from two beaches located in New Bedford 

Harbor. He approximates the benefit of removing PCBs to be $4.08 per year per household. Similarly, 

Hanely et al. (2003) evaluated the value of water quality improvements for day trips on seven Scottish 

beaches using the 1999 South-West Scotland data where respondents rated water quality on a 5-point 

Likert Scale. They estimated the value of water quality improvement from present conditions to the 

index's top level worth $0.77 per person per trip and $9.37 per season.  

 

Concerns about beach erosion have given rise another set of articles that considers the value of 

beach width for beach recreation. Parsons and Massey (2003) applied a travel cost model within a 

Random Utility Maximization framework to estimate the value of changes associated with different beach 

widths using the 1997 Mid-Atlantic day-trip data, which covers 62 ocean beaches. Their findings indicate 

that both very narrow (less than 75 feet) and very wide (more than 200 feet) beaches are less valued 

compared to beaches of intermediate width. The study also measured welfare losses associated with beach 

width reduction, estimating that a reduction from more than 75 feet to less than 75 feet might result in 

welfare losses of $0.75 per person choice occasion for specific beaches and up to $5 for all beaches in 

Delaware. Von-Haefen et al. (2004) used a multistage Monte Carlo Markov chain approach in the RUM 

model to estimate the value of lost beach width across all beaches in the same data set, yielding per 
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person per season values ranging from $50 to $139.  Whitehead et al. (2010) used the 2003 North 

Carolina data on 17 North Carolina beaches using three econometric models—single-site with contingent 

behavior, count-data system, and Kuhn Tucker—to estimate the economic impact of increasing beach 

width by 100 feet. Their findings varied, with estimated values ranging from $106 to $309 per person per 

season. A related study by Whitehead et al. (2008) focused on the single-site contingent-behavior model, 

estimating the value of this increase at about $7 per person per trip and between $61 to $85 per person per 

season using the same data set. Stefanova (2009) used the 2005 Mid-Atlantic data in a day-trip RUM 

Model to evaluate the economic impact of preserving beach widths over seven continuous beach 

groupings, and concluded that a 150-foot width would improve visitor welfare, providing values ranging 

from $0.12 to $2.00 per person per choice occasion. Likewise, Parsons et al. (2013) employed a single-

site contingent-behavior model using the 2010 Delaware Bay Beach data to analyze economic outcomes 

of changing beach widths. Results showed a loss of $5 per person per day if beach widths were reduced to 

a quarter of their current size, and a gain of $2.70 per person per day if widths were doubled. These 

calculations included both day and overnight trips.  

Beach Characteristics like parking space, vehicle access, bike paths, congestion, presence of 

parks play a vital role when it comes to beach recreation experience. Whitehead et al. (2008) used the 

2003 North Carolina data covering 17 beaches to estimate the value of improving nearby parking at $22 

to $28 per person per trip at all beaches, using a contingent-behavior model. Beach characteristics can 

affect different recreational groups very differently. For example, Stefanova (2009) estimated a RUM 

model using the 2005 Mid-Atlantic data to assess the impact of vehicle access on beaches. Focusing on 

day-trips only, she estimated a welfare loss of $0.18 per trip for surf fishers while a gain of $1.60 per trip 

for non-surf fishers if vehicle access was discontinued across all sites. Cutter et al. (2007) estimates a 

RUM model using the 1998 Costa Rica data to analyze the benefits of various on-site activities 

(swimming, sunbathing, hiking) in beach recreation. They valued several different beach attributes: 

temperature, kilometers of hiking trails, water/toilet facilities, table and grills, and an index of beach 
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quality based on width, sand quality and water temperature Their findings indicated significant value 

differences based on activity type, with clear substitution effects when resource availability changed 

across beaches. For instance, a 75% reduction in hiking trails resulted in a $25 loss per trip for hikers and 

an $8 gain for swimmers and sunbathers.  

The recent focus on offshore wind projects has also led to research that focuses on the impact of 

offshore wind turbines on beach recreation. Landry et al. (2012) employed a single-site contingent-

behavior model using the 2009 North Carolina data to determine the impact of offshore wind turbines on 

beach recreation. They combined thirty-one North Carolina beaches into a single site for analysis and 

found that placing wind turbines one mile offshore at all 31 beaches leads to a welfare loss of $17 per 

person per season, equivalent to approximately 1% of the total value of a trip during that season. In a 

more recent study, Parsons et al. (2020) used the RUM model with contingent-behavior data based on 

responses to visual simulations of wind power projects at seven different distances offshore (2.5-20 miles) 

in 275 east coast ocean beaches and discovered that the closer the projects are to shore, the greater their 

negative impact. For example, at 2.5 miles offshore, 29% of the sample said they would not go to the 

beach, compared to 5% at 20 miles offshore. These are the same data used in the present analysis. Fooks 

et al. (2017), Voltaire et al. (2017), and other studies also attempt different variants of travel cost model to 

estimate welfare change due to changes in beach characteristics in case of offshore wind turbine 

installation.   

Dundas et al. (2020) studied effect of weather on recreational fishing in the Atlantic and Gulf 

Coast regions – from 2004-2009 using two level nested logit model with the 2004-2009 NOAA National 

Marine Fisheries Service (NMFS) angler intercept data and found declines in participation (up to 15 

percent) and aggregate welfare loss (up to $312 million annually) over a range of predicted climate 

futures. Similarly, Toimil et al. (2018) analyzed travel cost data for 57 Northern Spanish beaches to 

estimate the per square meter welfare loss in beach recreation by 2100 under the RCP8.5 scenario-a high-

emissions scenario for global warming, commonly referred to as "business as usual," which assumes 
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continued increases in greenhouse gas emissions. They projected that the cumulative losses in beach 

recreation value by the end of the century would reach approximately €4752.54 million (97.5th 

percentile), representing 6.5% of the Asturian capital stock. Leggett et al. (2018) also used a travel cost 

RUM model in 2013 Southern California data to estimate the welfare loss of beach recreation associated 

with marine debris at 31 beaches in Orange County, California. They reported that a 25% reduction in 

marine debris at all beaches could lead to a per capita seasonal benefit of $12.91. Wang et al. (2020) 

applied the Kuhn–Tucker model to estimate the welfare loss for surf and marsh fishing trips due to the 

closure of the three most frequented recreational sites in Louisiana. They calculated annual welfare losses 

ranging from $592 to $2,101 per traveler.  

Like our study, many analysts have focused their welfare analyses on simple per trip access 

values. Access value represents the consumer surplus that individuals gain from accessing and enjoying 

beach amenities. It provides a comprehensive estimate of the total recreational benefits associated with a 

specific beach or a collection of beaches within a region. In an early application of the travel cost model 

to measure beach access value, Haab and Hick (1997) estimated the mean access value of $43 using 

multinomial logit model in RUM framework using the 1983 Chesapeake Bay data. In a more advanced 

application Blackwell (2007) study stands out as the first Australian beach recreation study using the 2000 

Australia Sunshine Coast dataset. The research examined five beaches on Queensland's Sunshine Coast 

and Cottesloe Beach in Western Australia. Blackwell developed separate econometric models for 

residents and visitors, distinguishing primary trips from side trips and travel cost is calculated from the 

place where the side trip began for the latter case. The five beaches were treated as a single beach 

(stacked regression) and focused on the beach access value. Blackwell estimated access value for 

residents (day trips) at $17.41 per person per trip and for visitors at $107.75 per person per trip. Bin et al. 

(2005) used a similar single-site trip cost approach to determine the value of beach access for seven North 

Carolina beaches using 2003 North Carolina data. They also used a stacked regression model with 

distinct models for day and overnight trips, allowing variation in constants and travel cost coefficients 
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across beaches. The resulting beach access values per person per trip varied from $11 to $80 for day trips 

and $11 to $41 for overnight trips. Landry and Liu (2009) employed a variant of the single-site travel cost 

model known as the discrete factor method (DFM), which accounts for correlation across demand 

equations and incorporates unobserved heterogeneity. They estimated the per trip benefit to be between 

$164 and $167 using 2003 North Carolina data. In contrast, Whitehead et al. (2008) used a simpler count 

data model based on the single-site travel cost approach, estimating the per person per trip value at $94 

with same data. Blackwell et al. (2013) and Zhang et al. (2015) applied a similar approach to estimate the 

recreational value of Gold Coast beaches at $10.44 and $19.47 per person per trip, respectively, for single 

beach visits and per visitors. Additionally, several studies have explored measuring access value using 

various adaptations of the travel cost model, including works by Windle et al. (2017) and Roca et al. 

(2009).  

Study Design & Model Specification  

 Travel Cost Random Utility Model  

We consider separate models for day, short overnight, and long overnight trips. Again, a day trip 

is one where a person visits a site and returns home on the same day.  A short overnight trip is a trip 

between 1 and 3 nights away (commonly a weekend) and a long overnight trip is more than 3 nights 

away. In so doing we are assuming these decisions are separable in the usual sense in consumer theory, 

which we think is reasonable give the different time constraints and features of these trips. Later we 

consider a theoretical set up where the three trip types are treated as equivalents in a unified model – the 

so called optimized out model (English et al. 2020). 

 The three models all have the same form, so we will layout one generic set up. We use a simple 

Random Utility Maximization model wherein an individual is choosing one beach from a set of 275 

beaches on each choice occasion.  Let beaches be indexed by 𝑖 where there are 𝐼 beaches (𝑖 = 1, … , 𝐼) 

and let individuals be indexed by 𝑛 where there are 𝑁 people (𝑛 = 1, … , 𝑁).  We do not consider the 
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participation decision in our model. The choice model is conditioned on knowing a person is making a 

beach trip on a given choice occasion (Train 1998).  

 Each beach 𝑗 is assumed to give a person 𝑛 an indirect utility 𝑉𝑛𝑖.  With a choice set of 275 

beaches there are 275 utility possibilities of {𝑉𝑛1, … , 𝑉𝑛𝑗 , … 𝑉𝑛275}.  Following random utility theory, we 

assume the indirect utility is composed of an observable and an unobservable part.  This gives 𝑉𝑛𝑖 =

𝑈𝑛𝑖 + 𝜀𝑛𝑖,  where 𝑈𝑛𝑖 is the observable part, which is parameterized for estimation, and 𝜀𝑛𝑖 is the 

unobservable and random part. Then, in random utility theory, we assume an individual 𝑛 on a given 

choice occasion chooses the beach giving the highest utility.  Under this theory an individual’s utility on a 

given choice occasion is 𝑀𝑎𝑥{𝑈𝑛1 + 𝜀𝑛1, … , 𝑈𝑛𝑖 + 𝜀𝑛𝑖, … , 𝑈𝑛275 + 𝜀𝑛275}.   

In its empirical form our model is 𝑈𝑛𝑖 = 𝛼𝑖 + 𝛽𝑛𝑖 ∙ 𝑡𝑐𝑛𝑖, where 𝛼𝑖 is the alternative specific 

constant for beach 𝑖 and 𝑡𝑐𝑛𝑖 is the trip cost for person 𝑛 to reach beach 𝑖.  This is sometimes referred to 

as an alternative-specific constant (ASC) model. In an ASC model each alternative in the choice set is 

parameterized by a lone constant (𝛼𝑖), which picks up the full effect of each beach (i.e., embodies all its 

salient attributes) relative to other beaches.   An ASC model will in estimation perfectly rank order the 

beach in terms of visitation – the most visited site attaining the highest parameter and so forth. The model 

also includes a trip cost variable (𝑡𝑐𝑛𝑖), which includes the travel and time cost of reaching of the beach 

and, in the overnight models, the cost of staying at the beach. We choose the ASC model, because our 

interest is estimating per trip access values and not attributes of the beach. Others have done the same 

(English, et al., 2018 and Parsons et al. 2021) Each beach utility now has the form 𝑉𝑛𝑖 = 𝛼𝑖 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛𝑖 +

𝜀𝑛𝑖 and the value of a trip is 𝑀𝑎𝑥{𝛼1 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛1 + 𝜀𝑛1, … , 𝛼𝑖 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛𝑖 + 𝜀𝑛𝑖, … , 𝛼275 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛275 +

𝜀𝑛275}.  

 The error terms {𝜀𝑛1,…,𝜀𝑛𝑖,…,𝜀𝑛275} in this behavioral model make it stochastic, which gives rise to 

a probabilistic choice model and an expected utility for use in the welfare analysis. As is well documented 

in the discrete choice literature, assuming the error terms are independent and identically distributed type 
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I extreme value random variables the probability of person 𝑛 choosing beach 𝑘 is 

 

(1)          𝑝𝑟𝑛𝑘 =
exp (𝛼𝑘+𝛽𝑡𝑐∙𝑡𝑐𝑛𝑘)

∑ exp (𝛼𝑖+𝛽𝑡𝑐∙𝑡𝑐𝑛𝑖)275
𝑖=1

, 

 

which is the standard logit form. The type I extreme value distribution also gives an expected utility of 

trip of  

 

(2)         𝐸𝑈𝑛 = 𝑙𝑛 ∑ exp (𝛼𝑖 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛𝑖)275
𝑖=1 ,  

 

Which is often called simply the “log-sum”.   Using different assumptions about error term distribution 

one can arrive at different forms for the probability and expected utility with different properties (e.g., 

nested logit and mixed logit). We use the standard logit in our application. For more on the development 

and nuisances of random utility theory and discrete choice econometrics see Train (2009). 

Equations (1) and (2) then are the building blocks for our analysis.  We estimate the parameters in 

equation (1), 274 ASCs and one on travel cost, using maximum likelihood.  (One ASC is dropped to 

normalize the model.) The likelihood function in log from is  ∑ ∑ 𝑦𝑛𝑘 ∙ ln [𝑝𝑟𝑛𝑘]275
𝑖=1

𝑁
𝑛=1 , where 𝑦𝑛𝑘 = 1 if 

person 𝑛 visits beach 𝑘, and = 0 otherwise. The parameters 𝛼𝑖 and 𝛽𝑡𝑐 are chosen to maximize the 

likelihood function – the set of parameters most likely to generate the set of outcomes realized in the data.   

The per choice occasion value for any given site 𝑖 then is the change in expected utility with the 

site in the choice set versus out of the choice set and then monetized by dividing by the coefficient on 

travel cost. Using equation (2) the per choice occasion access value for site 1 is 
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(3)      Δ𝑊1 = {𝑙𝑛 ∑ exp(𝛼𝑖 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛𝑖)275
𝑖=2 − 𝑙𝑛 ∑ exp(𝛼𝑖 + 𝛽𝑡𝑐 ∙ 𝑡𝑐𝑛𝑖, )275

𝑖=1 }/−𝛽𝑡𝑐. 

 

Dividing by the travel cost coefficient monetizes the change in expected utility, because −𝛽𝑡𝑐 is the 

marginal utility of income in the model. As shown by Bockstael and McConnell (2007) and Haab and 

McConnell (2002), equation (3) can be expressed as  

 

(3’)   Δ𝑊1 = ln(1 − 𝑝𝑟𝑛1) /−𝛽𝑡𝑐  

 

In this form it is easy to see that the larger the probability of visiting a site (𝑝𝑟𝑛1), the larger the choice 

occasion value. As the probability approaches 0, the choice occasion value goes to 0.  The per trip value 

for site 1 then is  

 

(4)     Δ𝑤𝑛1 = {ln(1 − 𝑝𝑟𝑛1) /−𝛽𝑡𝑐}/𝑝𝑟𝑛1.   

 

This follows since ln(1 − 𝑝𝑟𝑛1) /−𝛽𝑡𝑐 is the choice occasion value and 𝑝𝑟𝑛𝑘 is the expected “quantity” of 

trips taken during the choice occasion. Each site has some non-zero probability of being visited. For small 

values of 𝑝𝑟𝑛1, ln(1 − 𝑝𝑟𝑛1) ≈ 𝑝𝑟𝑛1 (Haab and McConnell 2002, p.229 and MacNair 2022). In this case, 

the per trip value is  

 

(4’)    Δ𝑤𝑛1 = {ln(1 − 𝑝𝑟𝑛1) /−𝛽𝑡𝑐}/𝑝𝑟𝑛1 ≈ {𝑝𝑟𝑛1/−𝛽𝑡𝑐}/𝑝𝑟𝑛1 ≈ 1/−𝛽𝑡𝑐 
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The same calculation can be made for choice occasion access value to multiple sites. So, for example if 

sites 1, 2, and 3 were closed equation (3’) becomes Δ𝑊1,2,3 = ln(1 − 𝑝𝑟𝑛1 − 𝑝𝑟𝑛2 − 𝑝𝑟𝑛3) /−𝛽𝑡𝑐 and for 

per trip values one divides by 𝑝𝑟𝑛1 − 𝑝𝑟𝑛2 − 𝑝𝑟𝑛3.  

This result should look familiar to practitioners of single site recreation demand models where the 

common seasonal consumer surplus has the form 
𝑥𝑛

−𝛽𝑡𝑐
, where 𝑥𝑛is the predicted number of trips during 

the season and 𝛽𝑡𝑐 is the coefficient on trip cost.  In that model the per trip value for the site under study is 

𝑥𝑛
−𝛽𝑡𝑐

𝑥𝑛
=

1

−𝛽𝑡𝑐
 .   By analogy and using site 1, the “occasion” surplus (numerator) in a RUM Model is 

ln(1 − 𝑝𝑟𝑛1) /−𝛽𝑡𝑐 and the “expected number of trips to the site” (denominator) is 𝑝𝑟𝑛1. 

In our application, we estimate separate models for day, short overnight, and long overnight trips. 

As noted earlier these are treated as separable commodities and so are estimated as three separate models 

giving us three sets of ASCs and three 𝛽𝑡𝑐 coefficients.  We will discuss the details of each data set in a 

later section. We will also consider a model where the three trip types are analyzed in a single unified 

model following the logic of English et al. (2020). And finally, to understand the importance of various 

beach attributes on choice we estimate a second-stage model with our estimated ASCs. This follows the 

work of Murdock and Timmons (2006) and Melstrom and Jayasekera (2017).  This formulation controls 

for the unobservables in choice and gives us additional policy-relevant findings over variables such as 

beach width and vehicle access.    

3. Beach and Respondent Data 

The Beaches 

Our analysis covers the beaches shown in Figure 1. These range from Massachusetts to South 

Carolina and include 275 beaches. The beaches were defined largely “as they are recognized by beach 

goers”, usually the coastal community neighboring the beach (e.g., Rehoboth Beach, Wrightsville Beach, 

Ocean City, etc.). The beaches under consideration extend nearly 995 miles along the coast and cover 

nine states.  North Carolina comprises nearly one third of this length. The beach count by state is reported 
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in Table 2.  The median beach length is 4,000 meters and the median width is 50 meters. The distribution 

of lengths and widths are shown in Tables 3 and 4. The widest beaches are in New Jersey (e.g., Wildwood 

(523 meters) and Wildwood Crest (284 meters)). The minimum beach width is zero due to some rocky 

shoreline. All the smaller beaches are in Rhode Island (e.g., Point Judith, Deep Hole Beach).  

 

Figure 1: Beach Area Included in the Analysis 

 

Table 2: Count of Beaches by State 

State  Number of Beaches  Percent  

New Jersey  51  19%  

Massachusetts  49  18%  

Rhode Island  49  18%  

South Carolina  42  15%  

North Carolina  40  15%  

New York  23  8%  

Delaware  14  5%  

Virginia  5  2%  

Maryland  2  1%  

Total  275  100%  

 

 

Table 3: Count of Beaches by Length 

Beach Length (meters) Number of Beaches Percent 
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0-1600 54 20% 

1601-3200 60 22% 

3201-4800 44 16% 

4801-6400 37 13% 

6401-8000 24 9% 

8001-9600 56 20% 

Total 275 100.00% 

 

Table 4: Count of Beaches by Width 

Beach Width (meters) Number of Beaches Percent 

0-40 99 36% 

41-80 136 49% 

81-120 29 11% 

121-160 11 4% 

Total 275 100.00% 

 

 

The beaches vary in character from small local natural beaches (e.g., West Chatham, MA) to 

large, developed beaches with a tourist focus (Myrtle Beach, SC, Atlantic City, NJ, and Ocean Beach, 

MD). Table 5 is a frequency distribution of beaches by degree of development. Since most beaches have 

diversified in their development, we have classified them as primary and secondary, where primary is the 

predominate type of development and secondary is the second most common.  The beaches in the region 

are mostly developed but the development is usually characterized by low lying development with at most 

some higher rise buildings. A few beaches, of course, have taller structures, usually hotels, casinos and 

other amusement facilities. Finally, Table 6 shows some of the salient beach characteristics of our 275 

beaches.   Nearly 40% of the beaches feature some type of natural or green space as a park or park within 

the beach area. Almost one in four are exclusively parks (e.g., Delaware Seashore, Cape Hatteras National 

Seashore, NC, and Assateague Island National Seashore, MD, VA). Others, like Cape May, NJ have 

notable parks as part of their beach areas. There are many well know boardwalk beaches including 

Rehoboth, DE, Myrtle Beach, SC, and Wildwood, NJ. About 17% of the beaches are boardwalk beaches 
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and only 4% have amusement facilities. Some of the latter beaches are Seaside Heights, NJ, Coney Island, 

NY, and Carolina Beach, NC. Shore fishing is common on many of the beaches and many have 4-wheel-

drive vehicle access (14%) and/or a fishing piers (14%).  In some cases, the fishing pier(s) is a dominate 

feature on shore such as on Virginia Beach, VA.  Several of the beaches (8%) require boat to access the 

beach.  

 

Table 5: Count of Beaches by Level of Development 

   

   

Primary 

Development 

Secondary 

Development 

Number of 

Beaches Percent 

Number 

of 

Beaches 

Percent 

No or very sparse fixed building  111  40%  110  40%  

Development consisting exclusively of low 

lying (< 4-5 stories) structures  
107  39%  122  44%  

Dominated by low lying structures with 

some taller structures present  
50  18%  39  14%  

Predominantly structures taller than 4-5 

stories  
7  3%  4  1%  

Total  275  100%  275  100%  

 

 

Table 6: Beach Characteristics (yes = 1, no = 0) 

  
Number 

of Beaches 
Percent 

Federal, State, or Local Park  64 23% 

Green Area or Park Within 40 15% 

Boardwalk  46 17% 

Fishing Pier  38 14% 

Vehicle Access 39 14% 

Seawall 11 4% 
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Amusements 12 4% 

Ferry or boat access only  22 8% 

 

 

Respondents  

We sampled households from the 20 states nearest the beaches on the East Coast just described 

and asked about their recreation/vacation trips to the 275 beaches in past year.  Figure 2 shows the states 

sampled. We used GfKs Knowledge Panel, which is a probabilistic-based panel of survey respondents 

and widely accepted as a gold-standard among survey researchers. The survey was done in 2015 asking 

respondents about beach trips in 2014. The survey was primarily designed to analyze the effect of 

offshore wind power projects on beach visitation and so included a large contingent behavior section on 

the reaction of beachgoers to possible wind projects. These data have been analyzed elsewhere (Parsons et 

al. (2020) and Parsons and Yan (2021). In this study we focus on the beach visitation data. 

 

Figure 2: States Sample for Beachgoers 
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The survey was done in two phases. The first phase was a general population survey in which we 

sampled 500 people to learn about participation (beach going) rates and how the general population might 

differ from the beach goer population.  Respondents were drawn randomly but drawn so that the share of 

people from each state matched the proportions from the actual population.  The participation rate (share 

who visited one of 275 beaches) was 35% --174 of the 500 respondents.  The second survey was an 

oversample survey where respondents were screened for participation – only respondents who had visited 

an East Coast beach in 2014 were included.  The oversample sample size is 1,551.  The two surveys 

together provided a total of 2,051 completed interviews with 1725 beachgoers.  Two sets of survey 

sample weights were developed by GfK.  One set is for the full sample of 2,051 and weights observations 

such that it is reportative of the general population – heavily weighting the non-participants who were 

heavily under sampled.  The other set of is for the beachgoer sample of 1,725.  It weights observation 

such that beachgoers from the general population and oversample samples can be combined and mimic a 

random draw from the beachgoers in our 20 states.  

Table 7 shows the basic demographics of the beachgoer and the general population. Both columns 

here and in the upcoming tables are weighted such the sample mimics the beach goer and general 

population. So, for example, the general population numbers are weight to reflect the 35% participation 

rate from the population. The general population demographics align well with U.S. Census data 2014 

after weighting, as they should be by construction. Notice in the table that beachgoers are slightly 

younger, more educated, more likely to work full time, and have higher income. Table 8 shows the 

frequency of beach trips by beachgoers and the general population. So, 57% of the beach goer population 

takes between 1 to 5 trips in a year, and 21% takes more than 5 trips in a typical year. The remaining 22% 

go less often than once a year. In the general population 39% report never or almost never taking beach 

trips and among those taking a trip most (25%) take between 1 and 5 trips. Finally, we asked people to 

report the way they most frequently use the beach while on trip. The results are show in Table 9: 37% 

reported activities in the sand, such as sunbathing, walking, reading, playing etc., 28% reported activities 

in the water like swimming, surfing, wading, etc., and 25% reported activities on the nearby boardwalk 
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such as shopping, site seeing. Only 4% reported surf fishing. Table 10 shows the number of different 

beaches visited by respondents. About half visited only one beach and 85% visited three or fewer.   

 

Table 7: Sample Demographics: Beachgoers and General Population 

 

Beachgoers  

(n=1725)  

 

Percent  

General Population 

(n=2050)  

 

Percent 

Age      

18-24 years 11.9% 9.6% 

25-34 years 19.7% 18.0% 

35-44 years 19.6% 17.9% 

45-54 years 15.6% 16.0% 

55-64 years 18.6% 20.7% 

65-74 years 11.3% 12.0% 

75+ years 3.3% 5.9% 

Education    

Less than High School or GED 6.9% 11.8% 

High School or GED 25.8% 31.4% 

Some College or Assoc. Degree 26.9% 25.6% 

College or Higher 40.4% 31.3% 

Employment Status   

Full time  47.0% 40.0% 

Part time  8.0% 8.0% 

Retired 19.0% 23.0% 

Other  21.0% 22.0% 

Unemployed  5.0% 7.0% 

Household Income (per year in 2015 USD) 

$0 – $24.9K  10.08 % 17.87 % 

$25K – $49.9K 17.78 % 21.7 % 

$50K – $74.9K 15.04 % 18.22 % 

$75K – $99.9K 20.04 % 14.88 % 

$100K – $149.9K 24.8 % 18.67 % 

$150K + per year 12.26 % 8.65 % 
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Table 8: Frequency of Beach Visits by Sample in a Typical Year 

Frequency of Beach Visits  

 

Beachgoers 

(n=1725) 

Percent 

 

 

General Population 

(n=2050) 

Percent 

 

Number of 

Respondents Percent 

Number of 

Respondents Percent 

More than 5 times per year  366 21% 162 8% 

Between 1 to 5 times per year 988 57% 510 25% 

Once every 2 years  206 12% 224 11% 

Once every 3 to 5 years  73 4% 181 9% 

Less than once every 5 years  57 3% 164 8% 

Never or almost never 35 2% 809 39% 

 1725 100% 2050 100% 

 

 

Table 9: Most Important Activities During Beach Visits 

Most Important Activities  
Beachgoers  Percent of the 

Sample  

Activities on the Sand  632  37%  

Activities on the Water  480  28%  

Activities on the Boardwalk/Nearby  433  25%  

Shore Fishing  62  4%  

Others  114 6% 

Total  1721  100%  

 

 

Table 10: Number of Beach Visited by Beachgoers 

Number of Visited 

Beaches 
Frequency Percent 

1 855 49.6% 
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2 368 21.3 

3 231 13.4 

4 94 5.4 

5 63 3.7 

6 to 10 99 5.7 

More than 10 15 0.9 

Total 1725 100% 
 

 

The models discussed in the next section are developed using a series of questions on the number 

of day, short overnight, and long overnight trips taken over previous year (2014).  A short overnight trip is 

any overnight trip with four nights or less away from home (usually weekend trips). The average length of 

the short overnight trip in the sample is 2.1 nights.  A long overnight trip is any trip more than 4 nights 

away (usually week-long vacations). Its average length is 6.1 nights away.  Finally, 26.3% of the 

respondents took only day trips, 20.6% took only short overnight trips, 22.5% took only long overnight 

trips, and 30.7% took some combination of the three trip types.  

Table 11 shows the distribution of trips by destination state. Table 12 shows the absolute count of 

trips when inflated to the population using a simple population-size/sample-size weight. The count of 

trips to beaches on the East Coast is estimated at 118 million.  Our data excludes people from states and 

countries outside of the study area we discussed earlier, so it is an understatement. We see in Table 11 that 

the New Jersey has the most trips with over 31 million in 2015. This is followed by South Carolina with 

17 million trips, and then North Carolina and Massachusetts 14.5 million each.  The composition of trip 

types varies considerably across the states. New Jersey and New York have the largest share of day trips, 

and the Carolinas have the largest share of overnight trips. This is consistent with South and North 

Carolina’s reputation as tourist destination and having smaller nearby population centers relative to the 

northern states. When we look at the numbers in terms of beach days in Table 13 the Carolinas rise in the 

ranking due their number of overnight trips. The total number of beach days in 2015 is 224 million. 

Although long overnight trips account for the fewest trips in the year, they account for most of the beach 

days (nearly 100 million) due to length of stay.  
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Table 11: Distribution Trips by Destination State 

State 

Day Trips 

(Percent) 

Short overnight 

Trips 

(Percent) 

Long Overnight 

Trips 

(Percent) 

New Jersey 31% 23% 10% 

New York 16% 16% 6% 

South Carolina 10% 16% 32% 

North Carolina 11% 13% 19% 

Massachusetts 13% 11% 10% 

Rhode Island 9% 3% 2% 

Delaware 4% 8% 5% 

Virginia 3% 6% 9% 

Maryland 4% 5% 7% 

Total 100% 100% 100% 

Number of trips 4,096 1,229 800 

Number of days on beach  4,096 2,581 5,040 

 

 

Table 12: Trips by Destination State and Percent from Out of State (Millions, Percent) 

 
 

Finally, the trip cost calculation is a key component in modeling recreational behavior. It is, in 

effect the price of trip to each site in a respondent’s choice set.  Given that our model accounts for three 

State Day 

Trip  

Out of 

State 

Short 

Overnight 

Trips  

Out of 

State 

Long 

Overnight 

Trips 

Out of 

State 

Combined 

Trips  

     

New Jersey 24.11 22% 5.45 56% 1.52 75% 31.08 

New York 12.74 4% 3.79 6% 0.94 24% 17.47 

Soth Carolina 8.25 19% 3.70 64% 4.95 95% 16.90 

Massachusetts 10.48 9% 2.59 41% 1.56 59% 14.63 

North Carolina 8.52 16% 3.06 37% 2.93 66% 14.51 

Rhode Island 7.11 21% 0.79 82% 0.34 72% 8.24 

Delaware 2.79 76% 1.85 84% 0.73 82% 5.38 

Maryland  2.79 13% 1.13 60% 1.09 72% 5.01 

Virginia 2.23 19% 1.34 59% 1.36 76% 4.93 

Total 79.02  23.71  15.43  118.16 

Beach days 79.02  49.79  97.20  226.02 
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types of trips—day, short overnight, and long overnight—the calculation of travel costs varies 

accordingly. For day trips, only transportation and related expenses are considered. However, for short 

and long overnight stays, additional costs for lodging, meals, and incidental expenses are incorporated to 

accurately reflect the increased expenditures associated with extended stays. Time cost is a critical 

component of total travel cost, representing the opportunity cost of time spent on trips. Commonly, travel 

cost models value time at one-third of an individual's potential earnings, based on a standard approach 

initiated by Cesario (1976) and derived from Beesley’s (1973) study on commuter choices. We use one-

third of wage and use reported yearly income divided by 2080 (days worked in a year) as a proxy for 

wage. This is standard in the literature (Parsons 2017). Trip cost for individual 𝑛 visting beach 𝑖  in our 

model is  

 

      𝑇𝑟𝑖𝑝 𝐶𝑜𝑠𝑡𝑛𝑖 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝐶𝑜𝑠𝑡 𝑛𝑖 + 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡𝑛𝑖 + 𝑂𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡 𝐶𝑜𝑠𝑡𝑛𝑖,   

                where,    

               𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝐶𝑜𝑠𝑡𝑛𝑖 = {𝜏𝑛𝑖𝑑𝑖𝑠𝑡𝑛𝑖 + 𝑡𝑜𝑙𝑙𝑛𝑖 + 𝑓𝑒𝑒𝑠𝑛𝑖 + 𝑓𝑒𝑟𝑟𝑦𝑛𝑖} ∙ 𝑠ℎ𝑎𝑟𝑒𝑛  

              𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡𝑛𝑖 = .33 {
𝐼𝑛𝑐𝑜𝑚𝑒𝑖

2080
} ∙ 𝑡𝑖𝑚𝑒𝑛𝑖. 

𝜏𝑛𝑖 is the cost per mile cost for individual 𝑛 to reach beach 𝑖, 𝑑𝑖𝑠𝑡𝑛𝑖 is round trip distance, 𝑡𝑜𝑙𝑙𝑛𝑖 is the 

cost of highway tolls, 𝑓𝑒𝑒𝑠𝑛𝑖 is the cost beach access on some of the beaches, 𝑓𝑒𝑟𝑟𝑦𝑛𝑖 is the cost of the 

ferry beaches with boat access only or if taking a ferry is cheapest route (e.g. Cape May Ferry), and 

𝑠ℎ𝑎𝑟𝑒𝑛 the self-reported share of expenses paid on a typical trip (reported separately for day, short 

overnight, and long overnight trips).  𝐼𝑛𝑐𝑜𝑚𝑒𝑖 is the respondent annual income provided by GfK and 

𝑡𝑖𝑚𝑒𝑛𝑖 is the round-trip time to reach the site. 𝑂𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡 𝐶𝑜𝑠𝑡𝑛𝑖 include lodging and meal expense and 

is computed using by per diem rates for lodging, meals, and incidental expenses, sourced from the 

General Services Administration (GSA) for each zip code area. We assume an average duration of short 

overnight trips (2.1 days) and long overnight trips (6.3 days). No such cost is included for day trips.  
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Travel distances to 275 beach destinations were computed for each respondent using PC*Miler 

Spreadsheets software, based on round-trip calculations from their residential addresses (specified by 5-

digit zip codes) to the geographical midpoint of each beach. The route type was set to "practical" in the 

PC*Miler software. Driving cost for each beach trip was determined by multiplying the calculated 

distance by the per-mile operating cost of vehicles, as reported in the 2015 AAA Driving Costs Report. 

Additionally, tolls, ferry fees, and driving times were also calculated using PC*Miler, employing the 

same origin and destination parameters as the distance calculations. Table 13 breaks the costs down by 

component for the chosen beach for an all beaches in the choice set for each trip type and includes a 

simple distance variable as well.  For example, the average distance to chosen beaches in the day trip data 

set is 89 miles and for all beaches in the choice set is 815 miles. For short overnight trips these numbers 

are 410 miles and 854 miles, and for long overnight trips are 752 miles and 937 miles.  

 

Table 13: Mean Trip Cost to Chosen Site and All Sites 

 Day Trip Short Overnight Trips Long Overnight Trips 

 

 

Chosen Site All Sites 

 

Chosen Site All Sites 

 

Chosen Site All Sites 

 

Total Trip Cost  $39.8 $304.4 $540.4 $724.7 $1468.1 $1578.0 

Transit Cost  $25.0 $178.3 $80.9 $182.8 $141.7 $200.9 

Time Cost  $14.7 $126.0 $69.9 $140.9 $106.5 $128.4 

Distance  89 mi 815 mi 410 mi 854 mi 752 mi 937 mi 
Note: Lodging and Meal cost not included here.  

Results 

The regression results are shown in Tables 14 through 16 separated by trip-length type. In each case we 

report the trip cost coefficient and the ASCs for the 15 beaches with the largest ASCs.  The last line 

shows the ASC range for the remaining beaches. We have excluded Bethany Beach Delaware for 

normalization purpose. So the results will be relative to it.  The results are as expected. The shorter the 

trip length, the greater the trip cost coefficient. The day trip coefficient is .052, the short overnight 

coefficient is .011, and long overnight coefficient is .003. So, day trippers are the most sensitive to trip 
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cost and the vacationers are least sensitive. This implies a lower marginal utility of incomes for the longer 

trips and hence higher per trip and access values as we will see shortly. 

 The top 15 ASCs for day trips are all from Massachusetts and Rhode Island beaches. So, after 

controlling for trip cost these are most popular beaches for day trips. The top ASCs for the Short 

Overnight Model are Long Beach, NY, Myrtle Beach, SC, Ocean City, MD, and Virginia Beach, VA – 

four well-known beaches geared toward overnight trips with lodging/accommodations. Hilton Head and 

Atlantic City also rank high as do, again, several beaches on Martha’s Vineyard.  In the Long Overnight 

Model, Myrtle Beach, SC, Ocean City, MD, and Virginia Beach, VA again show up among the top four 

and then many other beaches in the Carolinas such as Duck and Kitty Hawk, NC.  

Table 14: Day Trip RUM Model 

Variables  

 

  Coef   Std Err  

Trip Cost  -0.052  0.006 

asc17 Abnecotants Isand – Nuntucket, MA 9.705  1.436 

asc204 Aquinnah – Martha’s Vineyard, MA 8.978  0.984 

asc232 Siasconset – Nuntucket, MA 8.508  1.368 

asc241 Block Island, RI 8.333  0.883 

asc238 

Tom Nevers/New South Rd – Nuntucket, 

MA 8.216  1.368 

asc214 Esther Island, MA 8.134  1.376 

asc218 Katama – Martha’s Vineyard, MA 8.112  1.159 

asc219 Madaket – Nuntucket, MA 7.791  1.368 

asc237 

Surfside Beach/Fisherman’s Beach – 

Nuntucket, MA 7.715  1.201 

asc28 West Chatham, MA 7.298  1.483 

asc220 Miacomet – Nuntucket, MA 7.220  1.400 

asc233 South Beach – Martha’s Vineyard, MA 7.171  0.987 

asc205 Chilmark – Martha’s Vineyard, MA 6.689  0.996 

asc265 Cape Cod National Seashore – Eastham, MA 6.330  1.138 

asc268 

Cape Cod National Seashore – 

Provincetown, MA 6.049  1.064 

Range of other 

ascs  [5.506 :-0.596] [1.131:1.313] 

Observations (Trips) 9976   
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Table 15: Short Overnight Trip RUM Model 

Variables   Coef   Std Err  

Trip Cost  -0.011  0.001 

asc89 Long Beach, NY 6.748  1.028 

asc183 Myrtle Beach, SC 6.326  0.471 

asc16 Ocean City, MD 6.245  0.358 

asc203 Virginia Beach, VA 5.979  0.379 

asc232 Siasconset – Nuntucket, MA 5.624  0.922 

asc173 Hilton Head Island, SC 5.620  0.436 

asc33 Atlantic City, NJ 5.579  0.321 

asc218 Katama – Martha’s Vineyard, MA 5.575  0.634 

asc205 Chilmark – Martha’s Vineyard, MA 5.562  0.698 

asc204 Aquinnah – Martha’s Vineyard, MA 5.560  0.591 

asc237 Surfside Beach – Nuntucket, MA 5.559  0.898 

asc120 Nags Head, NC 5.418  0.529 

asc233 South Beach – Martha’s Vineyard, MA 5.416  0.613 

asc116 Kill Devil Hills, NC 5.157  0.595 

Range of 

other ascs  [5.079 : -1.5] [0.0461 : 1.029] 

Observations (Trips) 2967    
 

 

 

Table 16: Long Overnight Trip RUM Model 

Variables    Coef   Std Err  

Trip Cost  -0.003  0.000 

asc183 Myrtle Beach, SC 7.263  0.595 

asc16 Ocean City, MD 6.994  0.510 

asc203 Virginia Beach, VA 6.797  0.496 

asc171 Fripp Island, SC 6.108  0.865 

asc204 Aquinnah – Martha’s Vineyard, MA 5.941  1.059 

asc116 Kill Devil Hills, NC 5.839  0.677 

asc173 Hilton Head Island, SC 5.664  0.490 

asc107 Duck, NC 5.545  0.546 

asc117 Kitty Hawk, NC 5.456  0.933 

asc186 North Myrtle Beach, SC 5.451  0.500 

asc89 Long Beach, NY 5.378  1.095 

asc106 Corolla, NC 5.318  0.557 

asc169 Edisto Island, SC 5.137  0.854 
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asc182 Murrels Inlet, SC 5.115  0.680 

asc265 Cape Cod National Seashore – Eastham, MA 5.016  0.588 

Other asc  [5.003 :-0.017] [0.500 : 1.087] 

Observations (Trips) 1975   
 

 Next, we simulated the welfare loss for closing all beaches in each state for one year. Since there 

is no temporal substation in our model this can be scaled up or down factionally to get losses for a closure 

for months or even weeks. While this is not ideal, it is common in most RUM Models used in damage 

assessments.   The results are shown in Table 17.  The choice occasion values are per person are 

calculated using equation (3) or (3’). The time period for each is the relevant period for the trip length – 

day, short overnight, and long overnight. Since in a RUM Model ever respondent has a positive 

probability, these values average over all respondents in the analysis. No doubt, many live far from the 

beaches in the state in question and so have near zero values. The average values as shown tract the 

popular beach reasonably closely as we would expect. The choice occasion values are largest for New 

Jersey, New York, and the Carolina, for example.  Day trip choice occasion values range from $0.50 to 

$7. Short and long overnight range from $2 to $34 and $8 to $123. When these values are scaled up the 

population and all choice occasions over a year, we get the aggregate welfare losses shown in the last 

column. These can be thought of extreme cases where all beaches in each state are closed for one year. 

And, as mentioned above may be scaled – divide by 12 to arrive at the loss for one month, which will be 

averaged over the months in a year. The aggregate losses, surplus measures, range from $216 million to 

over $3 billion depending on the state.    

Table 17: Mean Per Occasion and Aggregate Welfare Loss of Closing All Beaches by State 

Closing 

State 

Day Trip 

(2015 USD) 

Short Overnight Trip 

(2015 USD) 

Long Overnight Trip 

(2015 USD) 

Aggregate Loss 

(million USD) 

  

New Jersey $7.34 $33.97 $123.84 $3,296.37 

New York $3.35 $15.50 $56.51 $1,504.25 

South Carolina $2.94 $13.63 $49.67 $1,322.05 

North Carolina $2.64 $12.20 $44.48 $1,183.95 

Massachusetts $1.89 $8.75 $31.88 $848.58 
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Rhode Island $1.47 $6.78 $24.73 $658.29 

Maryland $0.57 $2.66 $9.69 $258.00 

Virginia $0.52 $2.39 $8.70 $231.49 

Delaware  $0.48 $2.23 $8.13 $216.51 

 

 Values from Table 17 can be turned into per trip values by using equation (4), which divides the 

choice occasion values by the probability of taking a trip. Per occasion values are used for estimating total 

welfare loss in presence of beach closures policy though out the a state.  These are unit values that are 

widely used in benefit transfer and damage assessment cases where the parties agree to the number of lost 

trips due to a spill and unit surplus value to monetize that loss. These per trip values are, as expected, 

stable over the sample. Table 1 shows per trip value estimates from several other studies. There is a broad 

range of estimates there, but the estimates here seem more or less in line with recent results. For example, 

in a Gulf Coast study English et al. (2020) have per trip values for day trips at $12 (ours is $19) and for 

overnight trips, without distinguishing weekend and longer trip, has $435 (ours are $91 and $333). And, 

in a California study Leggett et al. (2018) have day trip values around $10 but getting as high as $35 

under different specifications. 

 

 English et al. (2020) and Lupi et al. (2020) argue that trip of different length should not be treated 

as different “commodities” as we have thus far. Instead, they argue that trips of longer length are merely 

repacking of the recreation experience to make the trip possible. In their model each person 

“optimizations out” all the on-site activities like sunbathing, visiting restaurants etc. and how long they 

stay. After optimizing all these features, a site utility is rendered and the person decides whether or not to 

take a trip and how many to take. In this way trips are customized by each person, choose the optimal 

“bundle” for them. It also implies that the cost or price of the trip includes only travel and time cost 

required to reach the site. Any other cost (lodging etc.) is net of any utility the site provides and so will be 

embodied in the site constant. Another argument for combining trips is the practical matter that overnight 

trips do not naturally “fit” the travel cost model, in that trips are intended to be “get-aways” and so near 
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sites may be undesirable. Hence, these sites, which have low travel cost will contaminate the results by 

signaling that low cost are not a good think and bias the trip cost coefficient. Figure 3 shows this effect, 

where long overnight trips and to limited extent short overnight trips avoid near sites – the density of trips 

over short distances is lower. When the trips are combined the down slope on distance emerges.  

 

English et al. (2020) goes on to consider models for separate day and overnight trips like ours, 

which are conventional, with models that combine trips and then compare results. We do the same. Our 

results are shown in Table 18.  The per trip value is about $76 so, close to but less than the short overnight 

trip and significantly greater than the day trip value of $19, which make up the lion’s share of the trips.  

Table 19 reports the aggregate values. In our case aggregate values are lower when the unified trip theory 

is applied. We have presented two sets of values for the separated models – one that includes on-site costs 

and one that does not. In both cases, the combined models give lower estimates. Interestingly, English 

find the reverse. There is no clear a priori reason to believe one or the other outcome. It will depend on 

the count on nature of trip profiles.   

Figure 3: Trip Density by Distance 
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Table 18: Combined Trip RUM Model 

Variables  

Beach, State 

 Coef   Std Err  

Trip Cost  -0.013  0.001 

asc17 Abnecotants Isand - Nuntucket, MA 6.432  0.793 

asc183 Myrtle Beach, SC 6.333  0.569 

asc16 Ocean City, MD 6.041  0.463 

asc203 Virginia Beach, VA 6.020  0.527 

asc173 Hilton Head Island, SC 5.876  0.547 

asc28 West Chatham, MA 5.845  0.982 

asc170 Folly Beach/Folly Island - Charleston, SC 5.431  0.561 

asc89 Long Beach, NY 5.419  0.763 

asc232 Siasconset - Nuntucket, MA 5.366  0.898 

asc162 Capers Island, SC 5.354  1.064 

asc116 Kill Devil Hills, NC 5.347  0.720 

asc204 Aquinnah - Martha's Vineyard, MA 5.317  0.583 

asc236 Squibnocket - Martha's Vineyard, MA 5.313  1.123 

asc33 Atlantic City, NJ 5.309  0.451 

asc176 Isle of Palms, SC 5.223  0.700 

Range of other ascs  [5.218 :  0.000] [0.926 : 0.844] 

Observations (Trips) 14918    
 

 

 

Table 19: Aggregate Welfare Loss Comparison of Closing All Beaches in a State keeping other open 

from different models (in million 2015 USD) 

Closing State Total Loss from 

Separate Trip Models 

Total Loss from Separate 

Trip Models 

(without meal & lodging cost) 

Total Loss from 

Combine Trip Model 

 

 

 

New Jersey 3296.37 1380.33 1980.85 

New York 1504.25 1010.46 903.93 

South Carolina 1322.05 718.15 794.44 

North Carolina 1183.95 639.79 711.46 

Massachusetts 848.58 439.76 509.93 

Rhode Island 658.29 262.67 395.58 

Maryland 258.00 546.98 155.04 

Virginia 231.49 394.55 139.11 

Delaware  216.51 247.07 130.11 
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 Finally, we consider a second-stage model following Murdock (2006) wherein we regressed our 

ASC estimates on beach characteristics. This allows us to consider the relative importance of the 

attributes and give us parameters that may be of policy relevance. The results are shown in Table 20 and 

variables are defined in Table 21. Beach length is good predictor of beach visitation.  The larger beaches 

have more space and in many cases are nearly a collection of smaller beaches, so this is no surprise. 

Width also works as expected. Respondents prefer wider beaches – 50 to 150 meters is strongly preferred 

to < 50 meters but > 150 is at best only weakly preferred to 50 to 150. So there appears to be an optimum. 

Also, while the signs make sense the statistical significance is not always there. Amusements is a good 

predictor for all trip types and boardwalk appears to matter for day trips but no overnight trips. This is 

perhaps explained by many of the overnight beaches being more of the cottage-style.   

 

Table 20: Second Stage OLS Murdoch Regression 

Variables Day Trip ASCs Short Overnight 

Trip ASCs 

Long Overnight 

Trip ASCs 

Combine Trip 

ASCs 

 Coef Std Err Coef Std Err Coef Std Err Coef Std Err 

Log Length 0.54*** 0.17 0.46*** 0.13 0.41*** 0.15 0.49*** 0.14 

Width 50 - 149 0.66 0.57 1.23*** 0.44 1.00 0.78 0.75 0.47 

Width 150 - 249 0.71 0.63 1.16** 0.49 0.82 0.82 0.76 0.51 

Width over 250 0.54 0.67 1.80*** 0.53 1.12 0.84 0.68 0.55 

Amusements 1.32** 0.61 1.31*** 0.44 1.50*** 0.47 1.34*** 0.51 

Boardwalk 0.72* 0.44 -0.01 0.35 -0.57 0.39 0.34 0.37 

Development 1 0.11 0.26 0.26 0.20 0.60*** 0.22 0.26 0.21 

Development 2 0.42* 0.25 0.49** 0.19 0.06 0.21 0.35* 0.20 

Fishing Pier 0.48 0.38 0.67** 0.27 0.67*** 0.30 0.52* 0.31 

Park 0.52 0.35 -0.07 0.28 0.28 0.32 0.07 0.28 

Park Within 0.76* 0.41 0.33 0.34 -0.04 0.37 0.31 0.34 

Remote Beach 1.32*** 0.42 0.86*** 0.32 0.22 0.38 0.45 0.33 

Vehicle Access 0.64* 0.39 0.40 0.30 0.33 0.34 0.68** 0.32 

MA 3.68*** 1.34 0.78 0.96 -0.08 1.00 1.17 1.13 

RI 2.43* 1.40 -0.26 1.03 -1.64 1.10 0.12 1.18 

NY 0.10 1.36 -0.20 0.99 -0.25 1.03 -0.75 1.15 

NJ 0.95 1.30 -1.70* 0.94 -2.35*** 0.97 -0.57 1.10 

DE 0.18 1.41 -0.79 1.01 -1.70 1.05 -0.05 1.18 

VA 0.09 1.48 0.09 1.06 -1.18 1.13 0.41 1.25 

NC -0.32 1.30 -0.56 0.94 -1.33 0.96 0.62 1.10 

SC 1.07 1.32 -0.19 0.95 -0.53 0.98 1.47 1.11 
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Constant -4.87** 2.16 -3.17** 1.60 -1.27 1.86 -3.09* 1.77 

n 220  190  161  236  
R-squared 0.42  0.52  0.50  0.42  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 21: Variable Definition of Beach Characteristics Effect 

Variable Definition 

 

Log Length Natural logarithm of beach length 

Width 50 - 149 
=1, if beach width is more than 50 feet and less 

than 149 feet 

Width 150 - 249 
=1, if beach width is more than 150 feet and less 
than 249 feet 

Width over 250 =1, if beach width is greater than 250 feet 

Amusements =1, if amusements are present at the beach 

Boardwalk =1, if boardwalk is present at the beach 

Development6 
0 – Areas that have no or very sparse fixed buildings, 1 – Areas that have 
development consisting exclusively of low lying (<4-5 stories) structures, 2 – 
Areas that are dominated by low lying structures with some taller structures 
present, 3 – Areas that are predominantly structures taller than 4-5 stories. The 
average development is 0.77, and 146 out of 275 beaches are above average 

Fishing Pier =1, if a fishing pier is present at the beach 

Park =1, if beach is a state park 

Park Within =1, if part of the beach is a state park 

Remote Beach =1, if a beach can be accessed only by a boat 

Vehicle Access =1, if driving on the sand is permitted 

MA, RI, NY, NJ, DE, 

MD, VA, NC, SC 

=1 if the beach is in the state  

 

Conclusion:  

Our findings suggest that the recreational value assigned to different beaches varies according to the 

duration of the visit. Specifically, as recreationalists plan to extend their stays from a single day to several 

nights, their willingness to incur higher travel costs increases, ranging from approximately $19 to $333. 

This trend is also reflected in the average distances to the selected beaches: while the average distance for 

day trips is 89 miles, this extends significantly to 752 miles for longer overnight stays. This indicates that 
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overnight trips, even excluding meal and lodging expenses, tend to generate greater value compared to 

day trips. The rationale behind this trend is that visitors are more inclined to travel further as the duration 

of their stay increases. 

Furthermore, our analysis using a separate trip model reveals distinct beach preferences based on the 

intended length of stay. For day trips, beaches in Massachusetts are predominantly chosen, likely due to 

their proximity and accessibility. In contrast, for short overnight stays, typically lasting a few nights over 

a weekend, beaches in well-known locations such as Ocean City, Atlantic City, and Virginia Beach are 

preferred, which offer extensive amusement facilities. For longer stays, spanning a week or more, the 

quieter beaches of North Carolina and South Carolina emerge as preferred destinations, underscoring a 

distinct shift in visitor preferences towards more tranquil environments for extended vacations. 

Through the application of various models within the same analytical framework, our research 

demonstrates that the estimated welfare derived from beach recreation can significantly vary based on the 

modeling assumptions employed, particularly those regarding the length of trips. By modeling trips 

ranging from a single day to multiple days, allowing for increased trip length enhances the ability of 

recreationists to choose an optimal bundle of different length trips. This integration of multiple trip 

lengths into a combined trip model probably facilitates greater substitution opportunities, which tends to 

lower the overall welfare estimates compared to models that estimate different trip lengths separately and 

then aggregate the welfare outcomes. Conversely, employing separate trip models somehow imposes 

certain restrictions on site choice preferences, as indicated by our findings reveal a distinct set of beaches 

preferred for varying trip lengths. As they limit the substitution possibilities between different trip types 

and consequently reflect a higher valuation for specific site attributes tailored to the trip's duration. 

Excluding the meal and lodging expenses from the travel cost components for overnight trips, as 

commonly recommended in conventional literature—under the assumption that these costs are optimized 

out during the trip selection process—results in a higher welfare estimate compared to that derived from 

the combined model. We observe that the estimated travel costs estimate to decrease when trips are 
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modeled separately but exclude meal and lodging expenses. This suggests that meal and lodging costs 

should not be treated merely as constant additions to travel costs that do not alter the travelling decision of 

individuals. These findings indicate a need for further investigation to understand how separate models 

yield different welfare estimates compared to the conventionally accepted approach of modeling trip 

lengths separately. Further research is required to determine which modeling approach provides estimates 

that are closer to reality. This will enhance our understanding of the economic implications of travel 

behavior and the validity of commonly used economic models in recreation studies. 
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