

BCHM 495: Molecular Genetics Lab

Spring, 2026

Course Information

Instructional Modality: Face-to-Face

CRNs: 35415, 35419

Course Credit Hours: 1

Consultation Times:

The professor and the TAs will be available via email and during/after the laboratory sessions. Additional office hours can be made available upon request at the professor's discretion.

Course Description

This course aims to impart junior scientists with a functional understanding of molecular genetics theory and laboratory applications. In the lecture sessions, genetic phenomena are described with an emphasis on understanding the underlying cellular structures and machinery that give rise to them. In the laboratory, students will undertake a sophisticated gene-editing research project in which CRISPRCas9 and molecular cloning will be used to test hypotheses about gene function and homology. After this course, students will be equipped with technical skills required for junior -level research projects in molecular biology laboratories and will be capable of describing the molecular mechanisms that determine gene function and heritability.

How to Succeed in this Course

For all material covered in this course, a good rule of thumb is that *you should be able to explain the topic to an imaginary incoming freshman student.* Explaining a topic is a great way to check whether you've mastered the relevant details. To quote Albert Einstein: "if you can't explain it simply, you don't understand it well enough."

Learning Resources, Technology, and Texts

Brightspace:

All assignments and course materials will be posted to the course's Brightspace page. I strongly recommend that you subscribe to email updates when course announcements are posted. Sometimes this option is automatically enabled, and sometimes it is not.

Geneious Prime:

Students will receive access to the Geneious Prime bioinformatics software platform for free due to a generous arrangement with the publisher. You will be able to install this

BCHM 495: Molecular Genetics Lab

Spring, 2026

software on your personal computers and use the fully featured version for the duration of the course. Instructions on how to install and use the software will be provided during the lab sessions.

Laboratory Learning Outcomes

1. Students will possess a strong foundation of fundamental molecular genetic techniques, calculations, and concepts in preparation for future research projects.
2. Students will gain proficiency in relevant and powerful biotechnology methods for studying gene function such as CRISPR-Cas9, homologous recombination, and molecular cloning.
3. Students will understand how to cultivate, phenotypically characterize, and genetically analyze common model organisms such as *A. thaliana* and *S. cerevisiae*
4. Students will be capable of constructing and presenting publication-quality figures using data they collect in their experiments.

Assignments

Pre-lab Quizzes:

Each lab session will begin with a prelab quiz. These generally require you to explain some aspect of how the experiment functions and to recall important safety or technical details.

Lab Reports:

The lab component of the course is divided into three main modules: classical genetics, targeted gene editing, and molecular cloning. You will be required to submit a lab report document at the end of each of these three sessions. This means that you must keep detailed records of the experiments you perform during each lab period.

Formal Research Presentation:

At the end of the course, each lab group will present their findings to the other groups by giving a formal research presentation. This will require the groups to walk through the concept behind their project as well as their data slides.

Honors Contracting:

As this is the first time this course is offered, there will be no available honors contracts for the lecture or lab sections. Future iterations of the course might offer this opportunity.

Grade Breakdown:

Lab Grade Breakdown

Lab Reports (x3): 90 points

Pre-lab Quizzes (x13): 50 points

BCHM 495: Molecular Genetics Lab

Spring, 2026

Formal Presentation (x1): 10 points

Total 150 points

Grading Scale

Final grades will be assigned using a typical lettergrade percentage scale:

A: 90% or above

B: 80% to 89%

C: 70% to 79%

D: 60% to 69%

F: below 60%

Attendance Policy

Laboratory attendance is mandatory unless there is a university approved absence waiver obtained through the [Office of the Dean of Students \(ODOS\)](#). It is impossible to make up experiments performed during the lab sessions.

We are happy to accommodate students who require specific arrangements for attendance, testing durations, etc. Please arrange such accommodations with the DRC, and they will automatically notify us.

BCHM 495: Molecular Genetics Lab

Spring, 2026

Course Schedule

Week	Lab Topic	Lecture Topic (subject to change)
1	Basic Biochemistry Lab Practices	Course introduction, genotypes and phenotypes
		The molecular genome—DNA structure and genes
		Cell division and gene flow across generations
2	Model Organisms and Scoring Phenotypes	No class –MLK Day
		DNA replication
		Gene segregation, dominance, phenotype ratios
3	Segregation Analysis, Intro to Gene Editing	Recombination, gene linkage
		Sexchromosomes, linked traits, dosage compensation
		Direct detection of gene sequences using PCR
4	Practice PCR, HR Primer Design	DNA repair mechanisms
		Repair-based gene editing: homologous recombination
		Repair-based gene editing: CRISPRCas9
5	Assembly of HR Donor DNA	Exam 1 Review Session
		Exam 1
		Telomeres and telomerase
6	Yeast Electroporation with Donor DNA	Genetic interactions: epistasis and synthetidethality
		Genetic screens and reverse genetic screens
		Mechanisms of non-Mendelian inheritance
7	Scoring Colonies, Phenotype Streaking	Gene mutations and their classifications
		Sources of genetic variation—genedrift and selection
		Molecular clocks and dating, phylogenetic trees
8	Phenotype Analysis, Intro to Molecular Cloning	Mobile genes—transposons and plasmids
		Expression vectors, molecular cloning, gene fusions
		From genes to traits—intro to gene expression
9	PCR to Clone Orthologous Genes	Transcription and RNA polymerase
		mRNA structure and stability
		Splicing and the spliceosome
SB	No lab – Spring Break	No class –Spring Break
10	Shuttle Vector Construction, <i>E. coli</i> Transformation	Exam 2 Review Session
		Exam 2
		Reverse transcription and retroviruses
11	Diagnostic Restriction Digests, Plasmid Sequencing	Translation and the genetic code
		The ribosome
		Functional roles of proteins, RNA World hypothesis
12	Yeast Plasmid Transformation, Sequence Analysis	Protein stability and degradation mechanisms
		Constitutive vs. regulated genes, tissue identity
		Gene regulatory elements, prokaryotes vs. eukaryotes

BCHM 495: Molecular Genetics Lab

Spring, 2026

13	Streaking for Phenotypes, Intro to Formal Presentation	Transcription factors and binding motifs
		Regulation via post-translational protein modifications
		The evidence for epigenetic heritability
14	Scoring for Complementation, Presentation Work	Chromatin structure and regulation via accessibility
		Epigenetic marks, gene silencing, the epigenetic clock
		“Omics” approaches and The Human Genome Project
15	Formal Presentation Symposium	Exam 3 Review Session
		Exam 3
		No class

Additional Course Policies

Notice of Copyright Protection of Course Materials

See the University Policies and Statements section of Brightspace for guidance on Use of Copyrighted Materials. Effective learning environments provide opportunities for students to reflect, explore new ideas, post opinions openly, and have the freedom to change those opinions over time. Students and instructors are the authors of the works they create in the learning environment. As authors, they own the copyright in their works subject only to the university's right to use those works for educational purposes. Students may not copy, reproduce, or post to any other outlet (e.g., YouTube, Facebook, or other open media sources or websites) any work in which they are not the sole or joint author or have not obtained the permission of the author(s).

Protect Purdue

Any student who has substantial reason to believe that another person is threatening the safety of others by not complying with Protect Purdue protocols is encouraged to report the behavior to and discuss the next steps with their instructor. Students also have the option of reporting the behavior to the Office of the Student Rights and Responsibilities. See also Purdue University Bill of Student Rights and the Violent Behavior Policy under University Resources in Brightspace.

Academic Integrity

Academic integrity is one of the highest values that Purdue University holds. Individuals are encouraged to alert university officials to potential breaches of this value by either emailing integrity@purdue.edu or by calling (765) 494-8778. While information may be submitted anonymously, the more information is submitted the greater the opportunity for the university to investigate the concern. More details are available on our course Brightspace under University Policies and Statements.

BCHM 495: Molecular Genetics Lab

Spring, 2026

Academic Misconduct

Academic misconduct of any kind will not be tolerated in any course offered by the Department of Biochemistry. Information on Purdue's policies with regard to academic misconduct can be found at the following website:

http://www.purdue.edu/studentregulations/student_conduct/regulations.html

Any incidence of academic misconduct will be reported to the Office of the Dean of Students (ODOS). Academic misconduct may result in disciplinary sanctions including expulsion, suspension, probated suspension, disciplinary probation, and/or educational sanctions. In addition, such misconduct will result in punitive grading such as:

- receiving a lower or failing grade on the assignment, or
- assessing a lower or failing grade for the course

Punitive grading decisions will be made after consultation with ODOS. Please note reported incidences of academic misconduct go on record for reference by other instructors. Further, a record of academic misconduct is likely to influence how current/future situations are handled.

To provide you with an unambiguous definition of academic misconduct, the following text has been excerpted from "Academic Integrity: A Guide for Students", written by Stephen Akers, Ph.D., Executive Associate Dean of Students (1995, Revised 1999, 2003), and published by the Office of the Dean of Students in cooperation with Purdue Student Government, Schleman Hall of Student Services, Room 207, 475 Stadium Mall Drive West Lafayette, IN 47907-2050.

"Purdue prohibits "dishonesty in connection with any University activity. Cheating, plagiarism, or knowingly furnishing false information to the University are examples of dishonesty." [Part 5, Section IHB-2-a, Student Regulations] Furthermore, the University Senate has stipulated that "the commitment of acts of cheating, lying, and deceit in any of their diverse forms (such as the use of substitutes for taking examinations, the use of illegal cribs, plagiarism, and copying during examinations) is dishonest and must not be tolerated. Moreover, knowingly to aid and abet, directly or indirectly, other parties in committing dishonest acts is in itself dishonest. [University Senate Document 72-18, December 15, 1972]

BCHM 495: Molecular Genetics Lab

Spring, 2026

More specifically, the following are a few examples of academic dishonesty which have been discovered at Purdue University:

- substituting on an exam for another student
- substituting in a course for another student
- paying someone else to write a paper and submitting it as one's own work
- giving or receiving answers by use of signals during an exam
- copying with or without the other person's knowledge during an exam
- doing class assignments for someone else
- plagiarizing published material, class assignments, or lab reports
- turning in a paper that has been purchased from a commercial research firm or obtained from the internet
- padding items of a bibliography
- obtaining an unauthorized copy of a test in advance of its scheduled administration
- using unauthorized notes during an exam
- collaborating with other students on assignments when it is not allowed
- obtaining a test from the exam site, completing and submitting it later
- altering answers on a scored test and submitting it for a regrade
- accessing and altering grade records
- stealing class assignments from other students and submitting them as one's own
- fabricating data
- destroying or stealing the work of other students

Plagiarism is a special kind of academic dishonesty in which one person steals another person's ideas or words and falsely presents them as the plagiarist's own product. This is most likely to occur in the following ways:

- using the exact language of someone else without the use of quotation marks and without giving proper credit to the author
- presenting the sequence of ideas or arranging the material of someone else even though such is expressed in one's own words, without giving appropriate acknowledgment
- submitting a document written by someone else but representing it as one's own”

Appropriate Use of AI

Generative AI tools such as ChatGPT and Gemini can be helpful for specific (often repetitive) tasks. However, everyone needs to be aware that these tools can and will fabricate facts, literature references, and credit for discoveries. They won't even feel shame in doing so:

BCHM 495: Molecular Genetics Lab

Spring, 2026

they're merely algorithms, after all. Thus, you must be extremely diligent in checking every statement made by a generative AI tool to ensure its accuracy. Since fabricating literature references and plagiarism are serious academic integrity violations, *I strongly recommend against using generative AI to write any text that is included in assignment submissions.*

Since exams and pre-lab quizzes are given in person, the assignments in this course that are the most likely culprits for AI usage are the problem sets and lab reports. As I mentioned above: do not use AI to write any part of your submissions for these assignments. Instead, consider using it as a tool to assist your understanding in the following ways:

- Evaluate whether the answer you wrote fully addresses the question
- Suggest wording changes to make your answer more precise or less wordy
- Ask for alternative explanations that your answer doesn't consider

These uses of AI can assist you in answering the question without inadvertently plagiarizing text from online resources or fabricating references to publications. Remember to always double-check claims from an AI tool and to ask the professor if you have any questions about the course policies.

Emergency Preparedness

In the event of a major campus emergency, course requirements, deadlines and grading percentages are subject to changes that may be necessitated by a revised semester calendar or other circumstances beyond the instructor's control. Relevant changes to this course will be posted onto the course website or can be obtained by contacting the instructors or TAs via email or phone. You are expected to read your @purdue.edu email on a frequent basis.

A link to Purdue's Information on Emergency Preparation and Planning is provided below:
<https://www.purdue.edu/ehps/emergency-preparedness/>

This website covers topics such as Severe Weather Guidance, Emergency Plans, and a place to sign up for the Emergency Warning Notification System. I encourage you to download and review the Emergency Preparedness for Classrooms document ([PDF](#)) or ([Word](#)).

The first day of class, I will review the Emergency Preparedness plan for our specific classroom, following Purdue's required Emergency Preparedness Briefing. Please make note of items like:

BCHM 495: Molecular Genetics Lab

Spring, 2026

- The location to where we will proceed after evacuating the building if we hear a fire alarm.
- The location of our Shelter in Place in the event of a tornado warning.
- The location of our Shelter in Place in the event of an active threat such as a shooting.

Online Course Evaluations

During the last two weeks of the semester, you will be provided with an opportunity to evaluate this course and your instructor(s). To this end, Purdue has transitioned to online course evaluations. On Monday of the fifteenth week of classes, you will receive an official email from evaluation administrators with a link to the online evaluation site. You will have two weeks to complete this evaluation. Your participation in this evaluation is an integral part of this course. Your feedback is vital to improving education at Purdue University. I strongly urge you to participate in the evaluation system.

Non-discrimination Policy

Purdue University is committed to maintaining a community that recognizes and values the inherent worth and dignity of every person; fosters tolerance, sensitivity, understanding, and mutual respect among its members; and encourages each individual to strive to reach his or her potential. In pursuit of its goal of academic excellence, the University seeks to develop and nurture diversity. The University believes that diversity among its many members strengthens the institution, stimulates creativity, promotes the exchange of ideas, and enriches campus life. Purdue's full Nondiscrimination Policy Statement is available at the following webpage: https://www.purdue.edu/home/ea_eou_statement/

Mental Health

If you find yourself beginning to feel some stress, anxiety and/or feeling slightly overwhelmed, try [WellTrack](#). Sign in and find information and tools at your fingertips, available to you at any time.

If you need support and information about options and resources , please contact or see the [Office of the Dean of Students](#). Call 765-494-1747. Hours of operation are M-F, 8 a.m.-5 p.m.

If you find yourself struggling to find a healthy balance between academics, social life, stress, etc., sign up for free one-on-one virtual or in-person sessions with a [Purdue Wellness Coach at RecWell](#). Sign up is free and can be done on BoilerConnect. Students in Indianapolis will find support services curated on the [Vice Provost for Student Life website](#).

BCHM 495: Molecular Genetics Lab

Spring, 2026

If you're struggling and need mental health services: Purdue University is committed to advancing the mental health and well-being of its students. If you or someone you know is feeling overwhelmed, depressed, and/or in need of mental health support, services are available. For help, such individuals should contact [Counseling and Psychological Services \(CAPS\)](#) at 765-494-6995 during and after hours, on weekends and holidays, or by going to the CAPS offices in [West Lafayette](#) or [Indianapolis](#).

Basic Needs Security

Any student who faces challenges securing their food or housing and believes this may affect their performance in the course is urged to contact the Dean of Students for support. There is no appointment needed, and Student Support Services is available to serve students from 8 a.m. to 5 p.m. Monday through Friday.

Accessibility and Accommodations

Purdue University strives to make learning experiences as accessible as possible. If you anticipate or experience physical or academic barriers based on disability, you are welcome to let me know so that we can discuss options. You are also encouraged to contact the Disability Resource Center (drc@purdue.edu, 765-494-1247).

Disclaimer

This syllabus is subject to change.