

Key winter pests on high tunnel spinach and effective options for management

BACKGROUND INFORMATION

- High tunnels, and other forms of protected culture, are rising in popularity (Janke et al. 2017), especially on urban farms where space is limited (Shoaf and Ingwell, 2021).
- Higher pest pressure and management is a major barrier in this production system (Ingwell et al. 2017).
- Little research has focused on the shoulder seasons (spring and fall) and during the winter.

OBJECTIVE 1

Describe biotic trends in winter high tunnels on farms along the rural-urban landscape gradient

Multi-state grower survey: Dec 2022 – Mar 2023

Dr. Sam Willden

Garima Kohli

Dr. Anna Wallingford

Multi-state grower survey: Dec 2022 – Mar 2023

Dr. Sam Willden

Garima Kohli

Dr. Anna Wallingford

In-situ crop counts and inspections

Primary winter crops in Indiana

Primary insect pests:

Primary insect pests: aphids and pillbugs

Primary natural enemies: aphid parasitoids and spiders

Aphids/parasitoids across landscapes:

Aphids: F_{2,14} = 0.19, *p* = 0.22

Mummies: F_{2,14} = 1.09, *p* = 0.36

OBJECTIVE 2:

Develop a management plan for aphids on winter crops.

What combination of biocontrol agents and Organic sprays are most effective?

Winter management of aphids: lab bioassay **Biocontrol** agents: Lab bioassay: 11L:13D, 10C, 70% RH *Macrosiphum euphorbiae,* N=20 Adalia bipunctata, N=10 Orius insidiosus, N=10 *Chrysoperla carnea*, N=10 **Biorational pesticide:** Water control PyGanic*

Neemix Sil-MATRIX

Split-split plot design. Each subplot was 3 X 10 ft with 12 spinach plants. Row covers deployed.

Split-split plot design. Each subplot was 3 X 10 ft with 12 spinach plants. Row covers deployed.

Each subplot was inoculated with 15 *Macrosiphum euphorbiae* adults

NA

Split-split plot design. Each subplot was 3 X 10 ft with 12 spinach plants. Row covers deployed.

Biocontrol release information:

Agent	Product	Source	Release per tunnel (380ft ²)	Cost per tunnel
Adalia bipunctata	Adalia system	BioBest®	400 larvae	\$ 135.96
Chrysoperla carnea	BioCarnea cylinders of larvae and egg tabs	BioBee®	2,000 larvae 16,000 eggs	\$ 82.80 for larvae \$ 41.40 for egg tabs
Orius insidiosus	BioOrius bottles	BioBee®	2,000 adults	\$ 93.48
Control	NA	NA	NA	NA

Results: lab bioassay

Spray impacts on aphids: lab bioassay

Single aphids: p = 0.01

Little impact of spray on predator survival

Spray impacts on aphids: field experiment

Trial 1: February

Spray impacts on aphids: field experiment

Trial 1: February

Trial 2: April

Spray impacts on aphids: field experiment

Early management efforts are most effective: → Neemix and Sil-MATRIX had the greatest impact

Aphid impacts on yield:

CONCLUSIONS

- Aphids are the dominant pests on winter high tunnel crops on farms
- Parasitoids are the dominant natural enemy, but they may have poor establishment on urban farms

Urban Suburban

Rural

Recommendation for winter aphid mgmt:

1. Early season prevention

Chrysoperla carnea

Recommendation for winter aphid mgmt:

Chrysoperla carnea

Recommendation for winter aphid mgmt:

1. Early season prevention

2. When aphids are increasing(< 5 aphids per leaf, Feb – March)

FUNGICIDE/MITICIDE/INSECTICIDE

INSECT GROWTH REGULATOR

Chrysoperla carnea

THANK YOU!

swillden@purdue.edu

lingwell@purdue.edu

@hightunnelipm

High tunnel production website

National Institute of Food and Agriculture U.S. DEPARTMENT OF AGRICULTURE

This work is supported by the Specialty Crop Research Initiative (SCRI) [grant no. 2021-51181-35858/project accession no. 1027430] from the USDA National Institute of Food and Agriculture.

Arthropod functional groups:

Proportion that were phytophagous, predators, parasitoids, oligophores, detritivores

