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A B S T R A C T   

Managers often rely on species surveys and distribution models to evaluate species occurrence and develop 
management and conservation plans. However, these tools are rarely used in concert. We used a three-step 
framework to evaluate the distribution of a declining and elusive freshwater amphibian species, the hellbender 
salamander (Cryptobranchus alleganiensis). We used the Maximum Entropy (MaxEnt) algorithm to develop a 
habitat suitability model to guide sampling, environmental DNA (eDNA) surveys to ground truth the habitat 
suitability model, and multi-level occupancy modeling to assess species presence, while accounting for eDNA 
detection errors. Our suitability model (AUC = 0.941, True Skill Statistic = 0.7, sensitivity and specifi-
city = 0.86) identified the greatest amount of high and very highly suitable habitat in the Interior Plateau and 
Blue Ridge ecoregions of the study area. We used eDNA survey results (n = 284 sites) to evaluate model fit and 
detected the species at 65 sites. Detection probability (p) was 0.692 (95% CRI: 0.547, 0.818) at the site level and 
0.674 (95% CRI: 0.621, 0.721) at the quantitative PCR level. Ecoregion was the primary covariate that explained 
occupancy, with greatest estimates in the Blue Ridge ecoregion 0.695 (95% CRI, 0.390, 0.925). Although the 
MaxEnt output was not significantly correlated with occupancy probability, we established a relationship be-
tween habitat quality and the number of eDNA detections. This study highlights the use of a multi-level fra-
mework to optimize sampling, assess model fit, account for imperfect detection, and evaluate the distribution of 
rare species that have limited occurrence data available.   

1. Introduction 

Efforts to inform conservation management and remediate causes of 
species declines are often impaired by the lack of baseline distribution 
data (Collins and Crump, 2009). True absence data are rare, and ex-
isting species occurrence datasets can be unrepresentative of true spe-
cies occurrence due to imperfect detection, sampling bias, and incon-
sistent sampling approaches (Newbold, 2010; Kéry and Royle, 2016, 
2020). Lack of distribution data can be especially challenging when 
developing range-wide conservation plans for elusive, rare, or declining 
species (Collins and Crump, 2009). Large scale surveys for rare species 
can be costly, time consuming, and random sampling is often unlikely 
to result in acquisition of numerous species detections (Buckley and 
Beebee, 2004; Beebee and Griffiths, 2005; Goldberg et al., 2011). 

An effective method to inform range-wide management decisions is 
to develop species distribution models (SDM) that permit managers to 
optimize their conservation funding through prioritization of survey 
efforts. As presence data may be the only occurrence data available for 
rare species, presence-only SDM approaches can be used to create ha-
bitat suitability models (Newbold, 2010; Elith et al., 2011). In general, 
SDMs estimate the potential distribution of target species across the 
landscape by relating species distribution data (e.g., presence-only data 
and pseudo-absences), with known or suggested environmental factors 
required to maintain viable populations of the target species (Elith and 
Leathwick, 2009; Phillips et al., 2006). Although habitat suitability 
models can be an effective tool to evaluate potential species distribution 
and identify priority conservation areas, models are often not validated 
through field surveys due to cost limitations or time restrictions, which 
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limits their predictive performance (Guisan et al., 2013; Riaz et al., 
2019). As a result, advancement of conservation efforts may be jeo-
pardized if decisions are based on inaccurate models (Loiselle et al., 
2003). 

Ground-truthing (i.e., evidence of species presence confirmed 
through surveys) is an important validation step that can be used to 
assess the performance of a habitat suitability model, strengthen model 
inference, and better inform occurrence-based management decisions 
(Greaves et al., 2006). Environmental DNA (eDNA, hereafter) sampling, 
for example, is a non-invasive method for monitoring species in both 
terrestrial and aquatic systems (Rees et al., 2014). Recent research on 
amphibians, reptiles, and fish indicate that eDNA can provide a more 
rapid, cost-effective, and less labor-intensive survey method compared 
to traditional field surveys (Goldberg et al., 2011; Spear et al., 2015). 
Even though eDNA has shown to be a reliable alternative to traditional 
field survey methods, species detection during eDNA surveys is not 
perfect and can be impacted by a variety of factors, including target 
animal abundance, weather conditions, and water and soil chemistry 
(Stewart, 2019). Occupancy modeling (MacKenzie et al., 2003) re-
presents one SDM method that permits prediction of a species dis-
tribution, while accounting for factors that impact detection. By ac-
counting for imperfect detection, researchers can assess survey 
effectiveness and accuracy of species distribution predictions (Kéry 
et al., 2013; Peterman et al., 2013). These data in turn can be used to 
assess accuracy of a habitat suitability model used to guide sampling 
efforts. 

Field surveys and SDMs are commonly used to effectively develop 
and manage species-specific conservation plans but are rarely used in 
concert (but see Riaz et al., 2019 and Peterman et al., 2013). In this 

study we demonstrate the development and implementation of a robust 
multi-level approach to evaluate the distribution of a declining and 
elusive freshwater amphibian species. Our approach consisted of three 
main phases, including 1) development of a habitat suitability model, 
2) ground-truthing of the habitat suitability model via eDNA surveys, 
and 3) evaluation of survey data using multi-level occupancy modeling 
to account for imperfect detection. Through this three-tier approach, we 
demonstrate how researchers can enhance distribution data for species 
by optimizing sampling efforts and accounting for imperfect detection. 
The focal species for this study was the hellbender salamander (Cryp-
tobranchus alleganiensis), which was chosen as a model species due to 
rapid range-wide declines, lack of range-wide distribution data, and 
unique life history characteristics (e.g., strong site fidelity, fully aquatic 
dependence, elusive behaviors). Our objectives were to 1) model and 
quantify suitable habitat for hellbenders within our study area, 2) use 
eDNA to assess hellbender distribution and validate the habitat suit-
ability model, 3) use occupancy modeling to evaluate field survey re-
sults, and 4) identify covariates that describe occupancy of C. allega-
niensis. These four objectives, accomplished in their respective order, 
provide a robust species distribution evaluation approach that can be 
applied to a variety of other elusive, threatened, and/or endangered 
species. 

2. Materials and methods 

2.1. Predictive habitat suitability model 

2.1.1. Model species and study area 
Hellbender salamanders, including the Eastern (C. alleganiensis 

Fig. 1. Maps representing the C. alleganiensis total geographic range that encompasses 15 States (Frame A; Hammerson and Phillips, 2004), the main river basins 
(Frame B) and ecoregions (Frame C) found within the study area. Frame C also displays all 284 sampling sites surveyed for eDNA between 2012 and 2016 in the 
current study. 
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alleganiensis) and Ozark (C. alleganiensis bishopi) subspecies, are fully 
aquatic, benthic inhabitants of streams and rivers in the eastern and 
midwestern United States of America (Petranka, 1998). Both subspecies 
have experienced range-wide population declines due to a variety of 
stressors, including habitat fragmentation, accelerated sedimentation in 
waterways, aquatic contaminants, infectious diseases, and poaching 
(Nickerson and Mays, 1973; Wheeler et al., 2003; Briggler et al., 2007;  
Burgmeier et al., 2011; Freake and DePerno, 2017). Despite research 
completed over the past four decades, challenges remain in the field of 
C. alleganiensis conservation and standardized population assessments 
throughout the geographic range have often been limited to rivers and 
streams with known populations. 

Our study area included the known range of C. alleganiensis in 
Tennessee, USA (Petranka, 1998; Fig. 1), which includes the Upper, 
Middle, and Lower Tennessee River, and Cumberland River basins. A 
considerable portion of the C. alleganiensis range in Tennessee occurs 
within the Tennessee River Basin, which currently holds the greatest 
number of hellbender populations across the historical range (USFWS, 
2018). Therefore, our study area constitutes a significant portion of the 
species total geographic range. 

2.1.2. Step 1: predicting habitat suitability with MaxEnt 
We used the MaxEnt algorithm (Phillips et al., 2006, 2009) to de-

velop a habitat suitability model for C. alleganiensis within the study 
area (Fig. 2 – Step 1). We acquired a total of 153 occurrence data points 
from seven main sources, including the Biodiversity Information Ser-
ving Our Nation (BISON), Global Biodiversity Information Facility 
(GBIF), Conservation Fisheries, Tennessee Species Wildlife Action Plan 
(TNSWAP), Tennessee Herpetofaunal Atlas (Austin Peay University), 
VertNet (www.vertnet.org), and the Tennessee Valley Authority (TVA) 
databases. We selected environmental variables based on our biological 
knowledge of the target species, and from studies that evaluated habitat 
parameters associated with the presence of C. alleganiensis and other 
sensitive aquatic taxa (Heino et al., 2003; Messerman, 2014; Pugh et al., 
2016). We used multiple environmental variables, including elevation, 
stream flow direction, geology, hillshade, land use, mean annual pre-
cipitation, slope, Strahler stream order, and temperature, with a 
minimum data grain of 30 m (Appendix A - Table A1). We developed a 
background points layer (i.e., pseudo-absences) by allocating 10,000 
randomly generated points among modeled streams and rivers 
throughout the study area. For more information on environmental 
variables, see Appendix A – Table A1. 

We used a ten-fold cross-validation approach to estimate habitat 
suitability across the study area (Messerman, 2014; Sutton et al., 2015). 

The initial model layer represented all streams within the study area 
with raster cells classified from least suitable (0.0001) to highly suitable 
(0.9999) on a logistic scale. We applied a 10-percentile training pre-
sence logistic threshold (0.141; hereafter referred as F10 threshold) to 
the resulting model layer to generate a binary map (i.e., suitable vs. not 
suitable), where cells were considered “suitable” if the suitability score 
was greater than the F10 threshold (Freeman and Moisen, 2008). Al-
though threshold selection is often arbitrary, the F10 threshold provides 
a more conservative approach and avoids overfitting compared to other 
thresholds such as the minimum training presence (Tinoco et al., 2009;  
Jarnevich and Reynolds, 2011). We used Jenk's natural breaks classi-
fication (Chen et al., 2013) in ArcGIS v.10.3 to further classify logistic 
suitability scores above the F10 threshold score into the four following 
habitat suitability categories: Category 1 (low suit-
ability = 0.141–0.348), Category 2 (medium suit-
ability = 0.348–0.555), Category 3 (high suitability = 0.555–0.761), 
and Category 4 (very high suitability = 0.761–1.0). By applying this 
two-step process (i.e., applying a threshold and using natural breaks), 
we developed a raster layer of waterways within our study area divided 
into four suitability classes to aid in site selection for eDNA sampling. 

We evaluated fit of the resulting habitat suitability model using the 
area under the Receiver Operating Characteristic Curve (AUC; 
Appendix C - Fig. C1) and True Skill Statistic (TSS). We considered the 
model informative when the AUC value was above 0.75 (i.e., 75% of the 
time the model correctly differentiates a test point from a random point;  
Fielding and Bell, 1997; Phillips, 2006; Sobek-Swant et al., 2012). The 
average TSS was calculated based on recommendations in Allouche 
et al. (2006) and Monserud and Leemans (1992) and is evaluated on a 
scale from −1 to +1, where values below 0.2 represent poor/as good 
as random model performance, and values above 0.7 represent very 
good/excellent model performance. We used both the AUC and TSS to 
evaluate model performance because AUC evaluates differences in 
distribution between random and occurrence points independent of 
thresholds, whereas TSS accounts for omission and commission errors 
based on a threshold and is not as sensitive to size of the modeled area 
(Lobo et al., 2008; Phillips and Elith, 2010; Warren and Seifert, 2011). 

We evaluated the MaxEnt output via response curves and Jackknife 
tests, which we used to assess how each variable contributed to the 
model predictions. Output response curves showed the mean effect of 
individual variables on model predictions over 10 replicates, whereas 
Jackknife tests assessed differences between variables and individual 
variable contribution. 

Fig. 2. We used a three-phase process 
to assess the distribution and occu-
pancy of C. alleganiensis within our 
study area. Briefly, these phases con-
sisted of a presence-only habitat suit-
ability model (Phase 1), range-wide 
ground-truthing of the habitat suit-
ability model using eDNA data (Phase 
2), and final assessment of occupancy 
and detection probabilities based on 
ground-truthing data (Phase 3). Each 
main step was composed of two or 
three steps completed in order. The 
“Validation step” checkmarks demon-
strate that one next step was used to 
validate the results from the previous 
step. 
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2.2. Step 2: validation of habitat suitability model through environmental 
DNA sampling 

2.2.1. Field surveys 
Between 2012 and 2016, we collected and filtered water samples 

from 284 sites to assess presence of C. alleganiensis DNA (Fig. 2 – Step 2) 
using the collection protocol described by Spear et al. (2015). Between 
2012 and 2015, we sampled 84 sites once based on goals of a separate 
ongoing study. In 2016, we allocated and sampled 200 sites based on 
our habitat suitability model. Of the 200 sites, we sampled 170 sites 
once and 30 sites three times (i.e., each of the 30 sites was sampled on 
June, July, and August 2016). We selected the 170 sampling sites by 
allocating 1000 random points across modeled waterways in the study 
area and selected approximately 42 survey points within each habitat 
suitability category based on accessibility. Thirty out of 200 sampling 
sites were not randomly selected; instead, we selected them based on 
previous data suggesting that 5 sites were negative, and 25 sites were 
positive for C. alleganiensis eDNA. These 30 sites were equally stratified 
among habitat suitability categories based on the MaxEnt suitability 
model and Level III ecoregions throughout the range of C. alleganiensis 
within the study area to control for potential influences of habitat 
quality and ecoregion effects on detectability. We ensured a minimum 
sampling distance of 5 km between all sites based on both home-range 
estimates for C. alleganiensis and uncertainties associated with eDNA 
sampling techniques to increase site independence (Peterson and 
Wilkinson, 1996; Deiner and Altermatt, 2014). For detailed field survey 
and sample collection methods, refer to Appendix B. 

2.2.2. Laboratory methods 
We used modified protocols reported in Goldberg et al. (2011) and  

Spear et al. (2015) to extract, purify, and amplify DNA from filters 
utilized to collect eDNA from water samples. We used DNeasy Blood 
and Tissue Kits (Qiagen, Inc.) and followed the standard protocols ex-
cept we used a Qiashredder (Qiagen, Inc.) spin column after the lysis 
buffer step. We amplified DNA via quantitative PCR (qPCR) with re-
verse and forward primers and probe that amplified a 104 bp region of 
mitochondrial cytochrome-B as recommended in Spear et al. (2015) 
These primers and probes were developed based on DNA from in-
dividuals collected across the entire C. alleganiensis range as described 
by Sabatino and Routman (2009). We considered a sample positive for 
C. alleganiensis DNA if 2/3 or 3/3 replicates amplified. We considered 
samples that had 1/3 replicates amplify as questionable positives. We 
amplified all questionable positive samples a second time and con-
sidered these samples positive if 1/3, 2/3, or 3/3 replicates amplified. 
We considered a sample negative for eDNA if 0/3 replicates amplified, 
or if a questionable sample had 0/3 replicates amplify the second 
round. For a detailed description of laboratory methods, refer to Ap-
pendix B. 

2.3. Step 3: occupancy modeling 

We used the multilevel occupancy model described by Nichols et al. 
(2008), Mordecai et al. (2011), Schmidt et al. (2013), and Kéry and 
Royle (2016, Section 10.10 which includes R and JAGS code to fit the 
model to the data) to evaluate potential covariates that describe occu-
pancy of C. alleganiensis while accounting for imperfect detection of the 
eDNA sampling method (Fig. 2 – Step 3). We used eDNA detection/non- 
detection data based on repeated site visits and triplicate PCR from 284 
sites sampled during seven sampling events: 2012, 2013, 2014, 2015, 
2016A (May – July), 2016B (July – August), 2016C (August – October) 
to assemble a detection matrix. The model estimates an occupancy 
probability and detectability at two scales: detectability in the water 
sample (given presence at the sampling site; “availability” in Schmidt 
et al., 2013) and detectability in the PCR, given that eDNA is in the 
water sample. Using uniform priors as in Schmidt et al. (2013), we 
fitted a single model with all covariates of interest to the data using 

JAGS and R (package “jagsUI”; Plummer, 2003; Kéry and Schaub, 2012;  
Kellner, 2018). For all probabilities, we used uniform priors in the in-
terval (0,1). For regression coefficients, we used uniform priors on the 
interval (−10,10). All models were run using a burn-in of 2000, 3 
chains, and thinning 1 in 10, with 20,000 iterations. Convergence was 
assessed using the Brooks-Gelman-Rubin statistic (Kéry and Schaub, 
2012). Convergence was satisfactory when R-hat values were smaller 
than 1.1 

We evaluated how linear and quadratic sampling date patterns may 
impact detection probability in the water sample while detectability 
was held constant at the qPCR (as in Schmidt et al., 2013). We eval-
uated the influence of sampling day because previous studies of aquatic 
salamanders found a quadratic effect of date on detectability (e.g., de 
Souza et al., 2016). For occupancy, we used five covariates that we 
hypothesized might affect C. alleganiensis occupancy across the study 
area, including elevation, Strahler order (as a continuous variable), 
agricultural and forest land cover, and ecoregion (i.e., geographical 
units defined by similar ecosystems, physiography, geology; Wineland 
et al., 2019). The effect of land cover was measured at the HUC 12 scale 
(i.e., hydrological units that capture tributary systems). We used the 
Geospatial Modelling Environment software (Spatial Ecology LLC 2015) 
to calculate the proportion of land cover categories within each HUC 12 
watershed across the study area and used forest and agriculture land 
use categories in our analysis. Because different sites were sampled in 
different years, we used a year-specific intercept which was defined as a 
random effect. To further assess the fit of our MaxEnt model, we 
compared the MaxEnt logistic output with occupancy model results. 

3. Results 

3.1. MaxEnt habitat suitability model 

Our habitat suitability model performed considerably better than 
random as indicated by an AUC value of 0.941 (STD = 0.023; Appendix 
C - Fig. C1), along with a TSS value of 0.77, and sensitivity and spe-
cificity values of 0.86. According to our analysis of variable contribu-
tion, the Strahler stream order variable contributed greatest to the 
suitability model (85.4%), followed by geology (7.4%), mean annual 
precipitation (2%), mean annual temperature (1.5%), land use and 
elevation (0.9% each), slope (0.8%), hillshade (0.6%), and flow accu-
mulation (0.5%; Appendix C – Table C1). Strahler stream order was also 
the most informative variable (i.e., contributed the most amount of 
unique information to the model), followed by geology and land use 
(Appendix C - Fig. C2). 

After application of the F10 threshold, the total suitable stream area 
(i.e., stream suitability Categories 1–4) for C. alleganiensis within the 
study area represented 12.2% (~422 km2) of the total modeled stream 
area (~3463 km2 before F10 threshold was applied; Table 1 - Frame A). 
The total suitable stream area was comprised of 48.6% (~205 km2) 
Category 1 streams, 24.4% (~103 km2) Category 2 streams, 24.6% 
(~104 km2) Category 3 streams, and 2.4% (~10 km2) Category 4 
streams (Table 1 - Frame A). The Interior Plateau ecoregion contained 
the greatest percent of all suitable (Category 1 or greater) streams 
(53%, ~225 km2), followed by the Ridge and Valley (23%, ~97 km2), 
Blue Ridge (13%, ~55 km2), Southwest Appalachian (8%, ~33 km2), 
Southeastern Plains (2%, ~8 km2), and Central Appalachian ecoregions 
(1%, ~5 km2; Table 1 - Frame A). After controlling for ecoregion area, 
the Interior Plateau had the greatest proportion (~31%, ~70 km2) of 
Category 3 streams, followed by the Ridge and Valley (~23%, 
~23 km2) and Blue Ridge (~14%, ~7 km2), whereas the Central Ap-
palachian ecoregion had the least (~3%, ~0.1 km2; Table 1 – Frame B). 
When considering only the highest suitability category, the South-
eastern Plains had the greatest proportion (~10%, ~0.7 km2) of Cate-
gory 4 streams followed by the Blue Ridge (~9%, ~5 km2), whereas the 
Central Plains and Southwest Appalachian ecoregions had no or very 
few streams in Category 4 (Table 1 – Frame B). 
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3.2. Environmental DNA field sampling 

Overall, from 2012 to 2016, we sampled 284 sites and detected C. 
alleganiensis eDNA at 65 individual sites (Table 2). Category 1 streams 
had the fewest proportion of detections (13.2%) and greatest propor-
tion of non-detections (86.8%), whereas Category 4 streams had the 
greatest proportion of detections (46.3%) and fewest proportion of non- 
detections (53.7%; Table 2). The Blue Ridge ecoregion had the greatest 
number of detections (34), followed by the Interior Plateau (17), Ridge 
and Valley (10), and Southwest Appalachian ecoregions (4), for a total 
of 65 detections across the study area (Table 2). All field and lab con-
trols were negative, which indicated that there was no contamination 
during field sampling or lab procedures. Although we were able to 
consistently amplify standards, our 10−6 μL standard failed to amplify 
completely (all three wells did not amplify) in 9 out of 19 plates and 
failed to amplify at least once (one or two wells did not amplify) in 5 
additional plates. Therefore, we considered our limit of detection to be 

0.000524 ng/μL (10−5). 

3.3. Occupancy model 

The occupancy model showed that detection probability at the PCR 
level was 0.674 (95% CRI: 0.621, 0.721). Detection probability at the 
field level was on average 0.692 (95% CRI: 0.547, 0.818) and did not 
depend on sampling date, but we note that the extreme uncertainty in 
both the linear and the quadratic term of Julian date makes this result 
highly inconclusive. Mean occupancy across the study area was 0.436 
(95% CRI: 0.073, 0.858). Parameter estimates of the variables de-
scribing occupancy are shown in Appendix A - Table A2. Occupancy 
varied among ecoregions. Estimated occupancy (and 95% CRI) for the 
ecoregions were 0.203 (0.070, 0.432) for the Interior Plateau, 0.695 
(0.390, 0.925) for the Blue Ridge, 0.408 (0.172, 0.710) for the Ridge 
and Valley, and 0.360 (0.165, 0.729) for the Southwestern 
Appalachians (Fig. 3 – Frame A). Other covariates had no strong effects 
and credible intervals of estimated coefficients overlapped zero. 

In our analysis of the relationship between MaxEnt logistic output 
and occupancy modeling results, MaxEnt logistic output positively in-
fluenced occupancy probability, but the credible intervals overlapped 
zero (coefficient: 1.123, 95% CRI: −0.268, 2.558, probability that the 
coefficient was greater than zero = 0.943; Fig. 3 – Frame B). 

4. Discussion 

We quantified the predicted suitable habitat area for C. alleganiensis 
to be only approximately 422 km2 within the study area. A large por-
tion of Category 3 and 4 streams were located within ecoregions that 
were, and will most likely continue to be, impacted by anthropogenic 
factors (Green et al., 2003; Drummond and Loveland, 2010). With 
limited availability of suitable habitat for C. alleganiensis within the 
study area, and the growing threats to stream habitat, the need is ap-
parent for additional biological information on the species (Alig et al., 
2003). The MaxEnt suitability model indicated that Strahler stream 
order (stream orders 4–6) and geology (granitic and sedimentary sub-
strates) were important contributors to the habitat suitability model, 
while our occupancy modeling results show that ecoregion explained C. 
alleganiensis occupancy. These factors may influence habitat suitability 
and site occupancy because the species has a strong relationship with 
substrate composition and stream hydrological patterns, which are 
determined by ecoregion-specific geomorphology and topography 
(Platts, 1979; Quinn et al., 2013). 

The effect of ecoregion on occupancy can serve as a proxy for the 
effect of land use practices on habitat quality. Bodinof Jachowski et al. 
(2016) suggested that even though C. alleganiensis occupancy was ex-
plained mainly by geology and physiography, agriculture and devel-
opment could have a negative effect on species occurrence. Urbaniza-
tion and agricultural practices affect water quality, increase sediment 
input into waterways, and significantly disrupt hydrological patterns 
(Malmqvist and Rundle, 2002). Our occupancy model results support 

Table 1 
Frame A) Suitable stream area (km2) per suitability category (i.e., Category 
1 = low suitability, Category 2 = medium suitability, Category 3 = high 
suitability, and Category 4 = very high suitability) within each ecoregion, and 
B) respective percent of each suitability category per ecoregion after accounting 
for ecoregion area. The “Total” column represents total suitable stream area per 
ecoregion (km2). The “Total” row represents the total stream area per suit-
ability category and the total area (km2) of suitable stream within the study 
area (422.39 km2).        

A 

Ecoregion Suitable stream area per suitability category 
(km2) 

Total (km2) 

Suitability category 1 2 3 4  

Central Appalachians 3.09 1.74 0.13 0.00 4.96 
Blue Ridge 29.72 12.07 7.80 5.02 54.60 
Southwest 
Appalachians 

19.33 11.27 2.75 0.13 33.48 

Ridge and Valley 46.75 25.59 22.63 1.91 96.89 
Southeastern Plains 3.59 2.24 0.99 0.76 7.58 

Interior Plateau 102.19 50.64 69.94 2.11 224.88 
Total (km2) 204.68 103.54 104.25 9.93 422.39        

B 

Ecoregion Percent of each suitability category per ecoregion (%) 

Suitability category 1 2 3 4  

Central Appalachians 62.39 35.03 2.58 0.00 
Blue Ridge 54.43 22.10 14.29 9.19 

Southwest Appalachians 57.73 33.65 8.22 0.39 
Ridge and Valley 48.26 26.41 23.36 1.97 

Southeastern Plains 47.36 29.51 13.09 10.04 
Interior Plateau 45.44 22.52 31.10 0.94 

Table 2 
C. alleganiensis detection and non-detections within each stream suitability category (i.e., Category 1 = low suitability, Category 2 = medium suitability, Category 
3 = high suitability, and Category 4 = very high suitability), and ecoregion (BR = Blue Ridge, IP = Interior Plateau, RV = Ridge and Valley, SA = Southwest 
Appalachians, CA = Central Appalachians, SP = Southeastern Plains). The “Total” column represents the total number of sites sampled at each ecoregion. The lower 
portion of the table represents the naïve occupancy per category.                

MaxEnt suitability category Ecoregions 

1 2 3 4 Total BR IP RV SA CA SP Total  

Detection (#)  9  12  19  25 65  34  17  10  4  0  0 65 
Non-detection (#)  59  66  65  29 219  36  139  29  12  1  2 219 
Total (#)  68  78  84  54 284  70  156  39  16  1  2 284 
Detection (%)  13.2  15.4  22.6  46.3 –  48.6  10.9  25.6  25  0  0 – 
Non-detection (%)  86.8  84.6  77.4  53.7 –  51.4  89.1  74.4  75  100  100 – 
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the hypothesis that C. alleganiensis occupancy was greater within 
ecoregions currently with lower (and likely lower historical) levels of 
anthropogenic land use change (i.e., conversion of forest to agriculture 
and urban areas). Congruent with results presented by Bodinof 
Jachowski et al. (2016), the Blue Ridge ecoregion within the study area 
had the greatest occupancy estimates compared to the Ridge and 
Valley, Southwestern Appalachian, and Interior Plateau ecoregions. The 
Blue Ridge ecoregion has historically experienced the smallest net 
percent change in forest cover between 1973 and 2000, whereas the 
Interior Plateau and Ridge and Valley experienced greater net percent 
change in forest cover, mainly due to agriculture and mechanical forest 
disturbance (Drummond and Loveland, 2010). This historical land use 
pattern may also explain why the Blue Ridge ecoregion contained the 
greatest proportion of very high suitability streams and the greatest 
occupancy estimate compared to all other ecoregions. Although our 
habitat suitability model shows that the Southeastern Plains ecoregion 
had a relatively greater proportion of very high suitability streams than 
the Blue Ridge ecoregion; only a small portion of the Southeastern 
Plains ecoregion is located within the study area. Therefore, we believe 
that these results do not represent the proportion of suitability streams 
within the entire Southeastern Plains ecoregion. 

Compared to results from Franklin (2016), where detection prob-
abilities for C. alleganiensis via eDNA in North Carolina were approxi-
mately 90%, we reported considerably lower detection estimates of 
approximately 67%. Since eDNA concentration is also a function of 
species abundance, density, and biomass, lower quality sites with lower 
species abundance would consequently have lower eDNA available for 
detection (Pilliod et al., 2013). We believe the difference in detection 
estimates between studies can be explained by the large disparities in 
species range size, habitat quality, and species abundance sampled in 
each study. We recommend that future studies conduct abundance 
surveys at a sub-sample of sites to account for errors in detection due to 
abundance-based heterogeneity. 

Although our model sensitivity and specificity were greater than 
85%, we acknowledge that our MaxEnt habitat suitability model has 
limitations. Because we created our habitat suitability model using C. 
alleganiensis occurrence data (1950–2016) from a different period than 
some of the environmental covariates (e.g., land use cover 2001–2010), 
the effect of these covariates on the target species may not be fully 
represented. In addition, our MaxEnt model does not take into con-
sideration small-scale biotic, abiotic, and anthropogenic factors that are 

important determinants of species distribution patterns (Barve et al., 
2011). For example, our habitat suitability model does not take into 
consideration inter and intra-specific competition or lack of micro-
habitat characteristics such as cover rock presence or low levels of 
substrate embeddedness (e.g., Da Silva Neto et al., 2019). The lack of a 
significant relationship between the MaxEnt logistic output and occu-
pancy probability highlights the predictive limitations of our model. 
However, there were several benefits of using a habitat suitability 
model in this study. Given the status of the species and its rapid decline, 
random sampling within the thousands of stream miles within the study 
area would likely be ineffective for providing informative distribution 
data. In addition, the resulting MaxEnt model is a tool that can guide 
future local and regional conservation efforts such as watershed level 
habitat mitigation, implementation of best management practices, and 
microhabitat surveys. Our overarching goal was to provide managers 
with a robust, but adaptable, framework to evaluate C. alleganiensis 
distribution across the study area. Following the principles of adaptive 
management, the model can be updated based on the acquisition of new 
locality data, which will aid in the development of management and 
conservation strategies that will contribute to the long-term conserva-
tion of rare and elusive species such as C. alleganiensis. 

5. Conclusions 

Our study demonstrates that by using a structured analysis frame-
work that combines species distribution modeling, ground-truthing (via 
eDNA surveys), and multi-level occupancy modeling, we were able to 
make robust inferences on baseline site occupancy for C. alleganiensis 
across the study area, evaluate factors that influence occupancy, and 
identify areas of high conservation concern. Further, we were able to 
estimate the area of suitable streams predicted to be available for the 
target species. A large portion of suitable streams located within ecor-
egions under high levels of development will most likely continue to be 
affected by anthropogenic factors. Furthermore, our study provides 
detection and non-detection data for C. alleganiensis at 284 sites that 
were previously not sampled. This information can contribute to future 
species status assessments and the development of species-specific 
management plans. Overall, this multi-level distribution analysis ap-
proach can be applied to many rare, threatened, and endangered spe-
cies with minimal occurrence and/or abundance data. 

It is important to note that our habitat suitability model may not 

Fig. 3. Frame A shows the relationship between occupancy probability and ecoregion. Symbols are posterior means and 95% CRI. The estimates are for the first year 
(the model has a year-specific intercept). Other predictor values in the model were fixed at their mean value. Frame B shows the relationship between the MaxEnt 
logistic suitability and occupancy probability. The thick line shows the posterior mean and the thin lines the 95% CRI. The “rug” on the x-axis shows predicted 
MaxEnt logistic suitability values. 
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represent habitat requirements for long-term persistence of the target 
species. Therefore, to increase the inference of this study, future re-
search should focus on selecting high quality streams with positive 
detections within each ecoregion and conduct physical surveys to assess 
the habitat associated with C. alleganiensis abundance. This information 
will not only help further ground-truth model results, but will also 
provide baseline population demographics that will facilitate long-term 
assessment of the effects of land use change on C. alleganiensis popu-
lations within different ecoregions. Future conservation of the species 
may rely on prioritizing populations and areas of highest conservation 
need. Therefore, demographic and distribution data will be essential if 
future conservation strategies include targeted stream restoration, en-
hanced watershed protection, population augmentation, and repatria-
tion of individuals into priority conservation areas. 
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