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Abstract
Variation in environmental conditions can result in disparate associations between hosts and microbial symbionts. As such, it is
imperative to evaluate how environmental variables (e.g., habitat quality) can influence host-associated microbiome composition.
Within wildlife conservation programs, captive conditions can negatively influence the establishment and maintenance of Bwild-
type^microbiotas within a host. Alternative microbial communities can result in the proliferation of disease among captive stock
or upon reintroduction. Hellbenders (Cryptobranchus alleganiensis) are a threatened salamander for which extensive captive
management is currently employed. Using metabarcoding, we characterized the skin microbiota of wild and captive hellbenders
from two subspecies in the state of Missouri, the eastern (C. a. alleganiensis) and the Ozark hellbender (C. a. bishopi). Both
subspecies in our study included wild adults and captive juveniles that were collected from the wild as eggs. Our objectives were
to investigate differences in the skin microbial communities’ richness/diversity, composition, and functional profiles of microbes
between wild and captive individuals. Captive eastern hellbenders possessed richer communities than wild cohorts, whereas the
opposite pattern was observed within the Ozark subspecies. We found significant microbial community structure between wild
and captive populations of both subspecies. Microbiota structure translated into differences in the predicted metagenome of wild
and captive individuals as well. As such, we can expect captive hellbenders to experience alternative microbial structure and
function upon reintroduction into the wild. Our study provides a baseline for the effect of captivity on the skin microbial
communities of hellbenders, and highlights the need to incorporate microbiota management in current captive-rearing programs.
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Metabarcoding

Introduction

Advances in microbiology have resulted in the ability to char-
acterize compositional and functional structure among host-
associated microbial communities. Recent work has identified
important contributions of microbial communities to host
physiological processes including immune system activation,
metabolism, energy uptake, host tissue differentiation, and
pathogen defense [1–4]. In-depth analyses of microbiomes
among hosts have characterized a high degree of covariation
between community composition and function [5]; thus, eval-
uating compositional variation has become an important tool
to predict functional variation among hosts [6]. Species iden-
tity is considered a major predictor of microbiota composition
in wildlife [7, 8]. However, within populations of a species,
environmental variation can also introduce variation in micro-
biota composition [9, 10]. For example, environmental
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variables such as habitat quality, diet, and presence of sympat-
ric species can contribute to changes in associations between
hosts and their symbionts [11–13]. To evaluate the effect of
environmental heterogeneity on microbial composition and
function, characterizing host-associated microbial communi-
ties across habitats is an important step.

Evaluating the effect of environmental variation on host-
associated microbiomes has become an important concern
within wildlife conservation programs. For example, captive
conditions can hamper the establishment and maintenance of
Bwild-type^ microbial communities within a host.
Maladaptive changes to host-associated microbiotas can result
from differences in diet [14, 15] and absence of natural bacte-
rial reservoirs (e.g., substrate) [16]. Changes in the microbiota
of captive-reared individuals can result in the proliferation of
disease among captive stock or upon reintroduction to the
wild [17]. Amphibians have become an important model to
evaluate the effect of captive conditions on host-associated
microbial communities, especially due to the contribution of
skin microbiota to disease resistance [18]. Currently, extensive
captive collections of amphibians exist around the world as a
response to massive population declines [19]. Studies evalu-
ating differences between wild and captive populations of
amphibians have observed dramatic differences in richness/
diversity and community composition between these two pop-
ulations [14, 16, 20, 21]. In addition, a negative relationship
between the presence of naturally occurring pathogen-
inhibitory bacteria and time spent in captivity has been ob-
served in captive amphibian populations, for example, in bo-
real toads (Anaxyrus boreas) [22]. As such, evaluating dispar-
ity in the microbial communities between wild and captive
amphibians can be used to explore potential negative effects
of captive rearing. This approach is particularly important for
endangered amphibians, where captive rearing is now a criti-
cal management strategy.

Hellbenders are fully aquatic salamanders distributed
throughout streams in the eastern USA. Two subspecies of
hellbenders are recognized, the Ozark hellbender
(Cryptobranchus alleganiensis bishopi), endemic to southern
Missouri and northern Arkansas, and the eastern hellbender
(Cryptobranchus alleganiensis alleganiensis), found in the
Appalachian Mountain region, Midwest, and an isolated pop-
ulation in central Missouri [23]. Both subspecies have experi-
enced declines within the past 30 years [24], both are listed as
state endangered in Missouri in 2003, and in 2011, the Ozark
subspecies was listed as federal endangered [25]. In the state
ofMissouri, theMissouri Department of Conservation (MDC)
and the St. Louis Zoo’s Ron Goellner Center for Hellbender
Conservation (RGCHC) maintain captive populations of both
subspecies. The MDC and RGCHC were the first to establish
captive-breeding programs for both subspecies, and possess
large captive stock from captive-bred and wild-collected eggs
with the intent to bolster wild populations [26–29].

Conservation management programs throughout the remain-
ing range of the eastern hellbender currently maintain captive
populations from wild-collected eggs, and have performed
translocations among populations [30]. Current hellbender
captive-rearing practices involve the use of mechanical, chem-
ical, biological, and ultraviolet filters to clean water used in
hellbender enclosures [26, 29]. In addition, captive individuals
are often fed commercially obtained fish, shrimp, and worms
that provide adequate nutrition, but do not match naturally
occurring food resources [26, 29]. When hellbenders are fed
wild caught prey, the prey items are quarantined and treated to
remove bacteria and other potential infective agents (e.g.,
Batrachochytrium dendrobatidis). Given the obvious differ-
ences between captive and wild conditions, it is necessary to
quantify variation in microbial community diversity and func-
tion between captive and wild hellbenders.

To evaluate if captivity influences the skin microbiota of
hellbenders, we set out to characterize the cutaneous microbial
communities of wild and captive Ozark and eastern hellben-
ders within the state of Missouri. Our objectives were to (1)
investigate differences in the skin microbiota richness/
diversity and composition between wild and captive individ-
uals, (2) predict functionality of hellbender skin communities
using established bioinformatics pipelines, and (3) evaluate
whether functional profiles between wild and captive hellben-
ders differ. Because captive hellbenders are maintained in
clean conditions throughout their development, we expected
captive individuals to possess less rich and diverse communi-
ties than their wild counterparts. In addition, we predicted
differences in the composition of the skin microbiota between
wild and captive individuals. Finally, we anticipated to ob-
serve a similar pattern of change in the predicted functional
profiles between wild and captive individuals.

Materials and Methods

Study Hellbender Populations

We swabbed the skin of wild adult hellbenders in the Eleven
Point River (EPR-Ozark hellbenders) and the Big Piney River
(BPR-eastern hellbenders). Both of these rivers are located
within the Salem Plateau, a subdivision of the Ozark Plateau
in southwestern Missouri. The Eleven Point River flows
southeast and joins the Spring River in Arkansas, whereas
the Big Piney River flows northeast and joins the Gasconade
River in central Missouri. Both rivers possess similar riparian
characteristics consisting of forest cover (EPR 65%, BP
68.3%), grassland/cropland cover (EPR 33.7%, BPR
31.1%), and urban cover (EPR 0.4%, BPR 0.2%) [31, 32].
Our study sites in both rivers were located in areas with fast-
flowing water and abundant large cover rocks, as this is indic-
ative of good hellbender habitat [23].
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Captive individuals from the Ozark and eastern hellbender
subspecies were collected from individual nests as eggs in
2010 and 2013, respectively, from the same rivers where we
sampled the wild hellbenders. All captive eastern hellbenders
were sampled from the same tank in the RGCHC; however,
six captive Ozark hellbenders were sampled from a separate
tank in the RGCHC and four from a display tank in the St.
Louis Zoo’s Charles H. Hoessle Herpetarium (CHH). Eastern
hellbenders, RGCHC Ozark hellbenders, and CHH Ozark
hellbenders are all kept under separate life support systems;
however, environmental conditions among all hellbenders are
similar (e.g., constant temperature ~ 14 °C, same diet, pres-
ence of tile/rock hides, use of gloves by staff before handling).
Hellbenders in the RGCHC and the Ozark hellbenders in the
CHH are cared for by separate teams of caretakers, and the
CHH enclosure possesses gravel substrate while enclosures in
the RGCHC do not.

Sample Collection

We swabbed the skin of wild adults and captive juveniles for
both subspecies of hellbenders. Swab samples were obtained
by swabbing the dorsum of each individual following the
protocol of Hernández-Gómez et al. [33]. We swabbed the
skin of wild hellbenders between August 25th and October
27th, 2015, from the Eleven Point River and the Big Piney
River. We swabbed captive hellbenders from both subspecies
at the St. Louis Zoo’s RGCHC on December 2nd, 2015. We
handled hellbenders following an approved protocol by the
Purdue University Animal Care and Use Committee
(PACUC protocol no. 14060011094).

DNA Extractions, Amplification, and Sequencing

We isolated DNA from skin swabs using the PowerSoil DNA
Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA) follow-
ing the protocol described in Hernández-Gómez et al. [33].
We amplified the bacterial 16S rRNAV2 region using primer
pair 27F/338R [34] with the attachment of connector se-
quences [33]. We ran each sample in triplicate, and each reac-
tion consisted of 5 μL of template DNA, 12.5 μL of MyTaq
Master Mix (Bioline, Tauton, MA), 1 μL of 10 mM forward
and reverse primers, and 6.5 μL of PCR water (MoBio
Laboratories Inc., Carlsbad, CA) for a total of 25 μL per
reaction. PCR conditions consisted of 95 °C for 2 min, 30 cy-
cles of 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s,
followed by 72 °C for 10 min. We pooled amplicon triplicates
and cleaned the products using the UltraClean PCR Clean-up
kit (MoBio Laboratories Inc., Carlsbad, CA).

We performed a second PCR on microbiota amplicons to
add-on dual-index barcodes connected to Illumina sequencing
adaptors [33] to the ends of amplicons. The PCR consisted of
5 μL of clean amplicons, 12.5μL ofMyTaqMasterMix, 1μL

of forward and reverse barcode primers, and 6.5 μL of water
for a total of 25 μL reactions. PCR conditions consisted of
95 °C for 2 min, 5 cycles of 94 °C for 45 s, 65 °C for 60 s, and
72 °C for 90 s, followed by 72 °C for 10 min. We quantified
the PCR products using a Qubit Fluorometer (Invitrogen
Corp, Carlsbad, CA), pooled samples in equimolar amounts,
and cleaned the sample pool using the UltraClean PCR Clean-
Up kit. The sample pool was sequenced on a MiSeq machine
(Illumina Inc., San Diego, CA) using the Reagent Kit V2 to
produce 250 bp paired-end reads.

Microbiota Sequence Analysis

We processed raw sequencing reads using Trimmomatic [35]
to remove adapter sequences, bases below threshold quality of
phred-20 from both ends of reads, and any resulting reads
under 30 bp.We paired reads that passed initial quality control
using PANDAseq [36]. Only reads that paired successfully
were employed in subsequent analysis.

Our microbiota sequence analysis consisted of established
sequence read processing pipelines to filter erroneous reads,
cluster reads into operational taxonomic units (OTUs), and
generate abundance-based OTU tables. We used a previously
published custom Python program [33] to remove quality
scores and rename reads with a name compatible with the
chosen pipeline. We processed the resulting read file using
the Quantitative Insights Into Microbial Ecology version
1.9.0 (QIIME) pipeline [37]. We clustered reads at the stan-
dard 97% similarity using the open-reference protocol and the
Greengenes 13_5 reference database [38]. Reads that failed to
cluster using the open-reference algorithm were clustered into
de novoOTUs with UCLUST [39]. OTUs that clustered using
the Greengenes database retained the accorded taxonomy,
while de novo OTUs were assigned taxonomy using the
RDP Classifier [40] at 80% confidence. We resolved any un-
assigned OTU taxonomies with an additional search of se-
quences in the RDP rRNA sequence database [41]. We
aligned representative sequences to the pre-aligned
Greengenes reference using PyNAST [42], and used the align-
ment to produce a phylogenetic tree through FastTree [43]. To
avoid including any OTUs generated by sequencer error, such
as base miscalls or chimeras, we performed additional quality
filtration on the OTU table by removing OTUs that were rep-
resented by fewer than 0.005% of the total read count [44]. To
standardize sequencing depth throughout all samples, we rar-
efied the OTU table to 3545 sequences per sample.

Metagenome Prediction

Because metagenome prediction requires the use of reference-
based OTUs only, we filtered all de novo OTUs from the raw
open-reference OTU table produced in QIIME to produce a
close-reference OTU table. We proceeded to quality filter the
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raw closed-reference OTU table as described above and stan-
dardized the sequencing depth throughout all samples to 656
sequences per sample. We implemented the bioinformatics soft-
ware package Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt v. 1.1.1) to infer
metagenome functions from the closed-reference OTU table
[45]. The program normalizes the OTU table by dividing each
OTU’s frequency by its known 16S rRNA gene copy number,
retrieves gene content for each OTU from the reference OTU
tree, estimates per sample abundance of each gene family as a
product of OTU abundance, and generates a metagenome table
(i.e., trait counts per sample). We collapsed the predicted
metagenomes to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthology group level 3, removed rare genes
that were represented by fewer than 0.005% of the total trait
count, and standardized total gene copies by rarifying the
metagenome table to 555,616 gene copies per sample. To assess
the accuracy of PICRUSt’s predictions, we calculated weighted-
Nearest Sequenced Taxon Index (weighted-NSTI) scores to es-
timate the extent that microorganisms in each sample are related
to sequenced genomes in the database [45]. Low weighted-
NSTI reflects a closer match between abundant microorganisms
in each sample and reference genomes.

Statistical Analysis

We compared the microbiota between wild and captive indi-
viduals from both hellbender subspecies separately by
assessing differences in community richness/diversity through
linear models and community structure using multivariate sta-
tistical tests. We also used multivariate statistical tests to eval-
uate differences in metabolite composition among wild and
captive hellbenders, and assessed for associations of metabo-
lites and captive or wild status at KEGG level 3. In all Ozark
hellbender wild versus captive analyses, we did not differen-
tiate between captive individuals sampled from display tanks
or aquaria. We performed all statistical analyses in R version
3.3.1 unless otherwise noted.

Microbiota Comparisons

We compared alpha metrics of skin microbiota samples be-
tween wild and captive hellbenders of each subspecies. We
calculated community richness (observed OTUs) and diversity
(phylogenetic diversity) values on each sample in QIIME using
the relative abundance-based OTU table. To evaluate whether
OTU richness differs between wild and captive individuals, we
implemented community richness as a dependent variable and
captivity status as an independent variable in negative binomial
linear models. To evaluate whether community diversity differs
between wild and captive individuals of each subspecies, we
implemented diversity as a dependent variable and captivity
status as an independent variable in a linear model.

We used the package GUniFrac [46] in R to build UniFrac
distance matrices (unweighted) [47]. We performed Adonis
tests using the unweighted UniFrac distance matrices within
the R package vegan 2.4-4 [48] to partition the variation be-
tween wild and captive individuals within each subspecies.
We visualized differences in community structure between
all hellbenders using unweighted UniFrac distances through
a principal coordinate analysis (PCoA) using the R package
ade4 [49]. We implemented the linear discriminant analysis
effect size (LEfSe) algorithm described in Segata et al. [50] to
test significant differences in OTU relative abundance be-
tween wild and captive hellbenders in each subspecies. The
LEfSe algorithm identifies the OTUs whose abundance statis-
tically differs between the wild and captive individuals
through a nonparametric factorial Kruskal-Wallis sum rank
test (α < 0.05). Subsequently, the algorithm generates effect
sizes for divergent OTUs through a linear discriminant analy-
sis (LDA). The effect sizes represent the magnitude of the
association of each relevant OTU. Tomaximize the stringency
of our analysis and simplify the list of divergent OTUs, we
excluded all singleton OTUs from the analysis and only
retained divergent OTUs with an LDA effect size greater than
3.0. Finally, we calculated the core microbiota (OTUs present
across 80% of individuals) for each category within each sub-
species. To visualize the number of shared core OTUs among
wild and captive hellbenders in each subspecies, we produced
Venn diagrams using the program Venny 2.1.0 [51].

Predicted Metagenome Comparisons

We built Bray-Curtis distance matrices from each subspecies
predicted metagenome table using vegan, and performed
Adonis tests to partition the variation between wild and cap-
tive individuals. We visualized differences in metagenome
composition of all hellbenders using Bray-Curtis distances
through a PCoA generated with ade4. We also used each sub-
species’ predicted metagenome table to perform a species in-
dicator analysis using the package labdsv in R [52]. The indi-
cator species analysis allowed us to identify the most promi-
nent pathways found on wild or captive hellbenders.

Results

At the time of sampling, all captive hellbenders appeared in
good health and free of any relevant skin conditions.We noted
cutaneous wounds in the extremities of one wild eastern hell-
bender and three wild Ozark hellbenders. These wounds are
consistent with previous observations in wild individuals of
hellbenders [33, 53, 54], and likely result from territorial
bouts. From 19 Ozark (nine wild individuals, ten captive in-
dividuals) and 18 eastern (eight wild individuals, ten captive
individuals) hellbender microbiota samples, 16S rRNA V2
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amplicon sequencing resulted in 926,882 reads with an aver-
age length of 318 base pairs. We processed the remaining
reads through QIIME using the open-reference clustering
method to return 1596 OTUs for all skin samples. Our
metagenome prediction consisted of 2858 functional genes.
We deposited sequencing data into the NCBI Sequence
Read Archive (project accession number PRJNA382978).

Microbiota Comparisons

We characterized differences in the skin microbiota between
wild and captive individuals of both subspecies of hellben-
ders. Wild Ozark hellbenders possessed richer but not more
diverse communities than those in captivity (observed OTUs
F1,17 = 5.64, p = 0.030; phylogenetic diversity F1,17 = 2.18,
p = 0.158; Fig. 1a, b). Conversely, captive eastern hellbenders
possessed richer and more diverse communities than wild in-
dividuals (observed OTUs F1,16 = 7.13, p = 0.017; phyloge-
netic diversity F1,16 = 10.16, p = 0.006; Fig. 1a, b).
Multivariate tests (i.e., Adonis) noted significant differences
between the skin microbiota of wild and captive hellbenders
(Ozark pseudo F = 5.67, R = 0.25, p < 0.001; eastern pseudo
F = 8.80, R = 0.35, p < 0.001). We visualized stronger segre-
gation of microbial communities between wild and captive
hellbenders than between the two subspecies on the PCoA
plot (Fig. 1c).

The LEfSe analyses identified 118 divergent OTUs between
wild and captive eastern hellbenders (34OTUsweremarkers for
wild and 92 for captivity) and 68 divergent OTUs between wild
and captive Ozark hellbenders (40 for wild and 28 for captivity;
Table S1). Captive hellbenders from both subspecies had signif-
icant associations with multiple OTUs identified to the family
Oxalobacteraceae, family Comamonadaceae, genus
Paucibacter, order Bacillales, genus Nevskia, genus
Flavobacterium, genus Nitrospira, order Burkholderiales, and
order Rhizobiales. Within wild hellbenders of both subspecies,
we saw associationswith the sameOTUs identified to the family
Comamonadaceae, phylum Cyanobacteria, family
Cytophagaceae, genus Fluviicola, order Bacteroidales, family
Ruminococcaceae, class Chloroflexia, genus Deinococcus, and
genus Streptococcus. All hellbenders in this study shared five
OTUs in their core microbiota identified to the family
Bradyrhizobiaceae, the family Comamonadaceae (× 2), genus
Propionibacterium, and order Burkholderiales. In addition, we
observed overlap in core OTUs between wild and captive hell-
benders of both subspecies, among captive hellbenders of both
subspecies, and among wild hellbenders of both subspecies
(Fig. 2). There was a noticeable shift in the core microbiota
between wild and captive eastern hellbenders with the wild east-
ern hellbender communities dominated by Verrucomicrobia
(28.0%) and Proteobacteria (25.0%) and the captive eastern
hellbender communities dominated by Proteobacteria (41.8%),
Bacteroidetes (12.3%), Actinobacteria (7.5%), Firmicutes

a
c

b

Fig. 1 Alpha and beta diversity comparisons of wild/captive eastern and
hellbender skin microbiotas. aDot plot of OTU richness values and b dot
plot of phylogenetic diversity values are presented for both subspecies.
Group means and standard error bars are present in dot plots and signif-
icant differences are marked with an asterisk. c Principal

coordinate analysis using unweighted UniFrac distances is pictured.
Each point represents the skin bacterial community of an individual
hellbender. Clustering by subspecies identity and captivity status is
visible
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(3.8%), and Nitrospirae (2.7%; Fig. S1). A similar pattern was
observed among Ozark hellbender samples, with the wild hell-
bender core microbiota dominated by the phyla Proteobacteria
(30.3%), unassigned OTUs (21.0%), Bacteroidetes (4.3%), and
Verrucomicrobia (3.1%); and the captive Ozark hellbender skin
core microbiota dominated by the phyla Proteobacteria (8.1%)
and Bacteroidetes (5.1%; Fig. S1).

Metagenome Prediction Analysis

Our metagenome predictions had a low weighted-NSTI value
(mean ± SE 0.088 ± 0.0029), corresponding with accurate re-
lationship with sequenced genome representatives. Using the
predicted metagenomes, we also identified significant differ-
ences in putative function composition and abundance be-
tween wild and captive hellbenders. Multivariate tests (i.e.,
Adonis) on Bray-Curtis distances noted significant grouping
of samples based on wild or captive status (Ozark pseudo F =
9.28, R = 0.35, p < 0.001; eastern pseudo F = 2.90, R = 0.15,
p = 0.023). In addition, we visualized marginal clustering be-
tween the putative metagenomes of captive and wild hellben-
ders in the PCoA (Fig. 3a). At KEGG Orthology hierarchy
level 3, we identified significant associations between wild
and captive individuals and specific functional pathways
across both subspecies of hellbenders (Fig. 3b). A majority
of the predicted differences observed in the abundance of
functional pathways between wild and captive hellbenders
were in genes contributing to cell metabolism. Pathways re-
lated to protein breakdown (e.g., amino acid metabolism),
metabolism of terpenoids/polyketides, biosynthesis of sec-
ondary metabolites, and glycan biosynthesis/metabolism were
consistently predicted to be abundant among wild hellbenders
of both subspecies (Fig. 3c). On the contrary, captive

hellbenders possessed a higher number of putative pathways
related to xenobiotic biodegradation andmetabolism (Fig. 3c).

Discussion

Characterizing host-associated microbiotas throughout dis-
tinct habitats is imperative to predict changes in microbial
community and functionality that parallel environmental
change. In our system, we observed significant differences
in the microbiota of wild and captive hellbenders in
Missouri. Among Ozark hellbenders, we observed higher di-
versity of bacteria on the skin of wild individuals compared to
captive. However, we detected an opposite pattern among
eastern hellbenders with captive individuals possessing higher
diversity than wild ones. Moreover, we noted significant di-
vergence in microbial community composition and predicted
metagenomes between wild and captive hellbenders, and ob-
served consistent shifts in the abundance of bacteria in the
phyla Proteobacteria, Bacteroidetes, and Verrucomicrobia be-
tween wild and captive hellbender populations. These results
show that raising hellbenders in captivity results in disparate
microbial communities compared to wild cohorts. In addition,
wild hellbenders possessed a greater number of metabolism-
related genes than captive individuals in their skin microbiota,
suggesting that the skin microbial communities of wild hell-
benders possess higher metabolic plasticity. Therefore, our
results imply that the captive environment induces divergent
assemblies of the skin microbiota of hellbenders that could
influence the success of reintroduction efforts.

We expected that captive hellbenders would possess re-
duced cutaneous microbial community richness and diversity;
however, this pattern was only observed in Ozark hellbenders.
Interestingly, captive eastern hellbenders possessed richer and
more phylogenetically diverse communities than their wild
cohorts. Contradicting patterns in the influence of captivity
on the richness/diversity of the amphibian skin microbiota
are reported in the literature. A number of studies have de-
scribed richer or more diverse cutaneous communities in wild
ranids and plethodontids compared to captive ones [14, 16,
20, 22, 55]. However, Becker et al. [21] characterized the skin
microbiota of wild and captive Panamanian golden frogs
(Atelopus zeteki) and observed that captive frogs possessed
richer and more diverse communities than wild individuals.
Inconsistency in richness patterns between eastern and Ozark
hellbenders may result from variation in age and time spent in
captivity between the two captive cohorts. In our study, the
captive Ozark hellbenders hatched in 2010, whereas the east-
ern hellbender cohort hatched in 2013. Previous studies have
observed a correlation between time in captivity and the loss
of natural and functionally important bacteria from host-
associated amphibian microbiotas [22]. Thus, it is likely that
captive Ozark hellbenders have lost a greater number of their

Fig. 2 Venn diagram displaying overlap in core microbiota of captive/
wild Ozark and eastern hellbenders. Core microbiota represents OTUs
present in 80% of individuals within each group. Shading corresponds to
magnitude of OTUs in each category. Ubiquitous OTU taxonomies are as
follows: 165,421 Propionibacterium sp.; 574,721 Comamonadaceae;
750,411 Burkolderiales; 826,276 Bradyrhizobiaceae; and 1,108,726
Comamonadaceae
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skin microbes due to their prolonged exposure to captive
conditions.

Our study differs from previous investigations in that we
simultaneously characterized the effect of captivity on the skin
microbiota of two closely related amphibians. Previous

studies on the skin microbiota of wild hellbenders describe
differences between the two subspecies [33, 56]. In the current
study, we noted marginal differences between the two subspe-
cies and a much stronger pattern of microbial community
structure between wild and captive. Even within captive

b

a c

Fig. 3 a Principal coordinate analysis of Bray-Curtis dissimilarity
matrices from wild/captive Ozark and eastern hellbender skin bacterial
community predictedmetabolites. Each point represents the skin bacterial
community predicted metabolites of an individual hellbender. Marginal
clustering by captivity status is visible. b Frequency of metabolites

significantly associated with the skin microbial communities of wild/
captive eastern or Ozark hellbenders. c Frequency of metabolites
contributing to cell metabolism which are significantly associated with
cutaneous microbial communities of wild/captive eastern or Ozark
hellbenders
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Ozark hellbenders, we noted variation in the microbial com-
munities that was associated with the split of samples between
the CHH and RGCHC. The effect of captivity on the micro-
biota of hellbenders is consistent with previous studies evalu-
ating the effect of environment on the microbiota of amphib-
ians [14, 20, 21, 57]. However, our data illustrates how the
captive environment can erode natural differences between the
skin microbial communities of wild amphibian species. These
observations suggest that captive conditions may disturb nat-
ural variation in the skin microbiota of amphibian species. In
addition, even small changes to habitat conditions, such as the
differences between CHH and RGCHC, can result in disparate
microbial community structure.

Our hellbender skin microbiotas were dominated by the
phyla Proteobacter ia, Bacteroidetes , Firmicutes ,
Verrucomicrobia and Actinobacteria. These phyla have been
universally characterized as common members of wild am-
phibian skin microbiotas [8, 33, 58]. However, previous stud-
ies have recorded abundance shifts of these phyla on the skin
microbial communities between wild and captive amphibians
[16, 20, 21]. In our study, we observed higher abundances of
Bacteroidetes and Proteobacteria among captive hellbenders
of both subspecies. In addition, we observed associations be-
tween captivity status and specific OTUs belonging to the
phyla Bacteroidetes, Proteobacteria, and Firmicutes.
Commonalities in OTU associations between captive and wild
hellbenders could result from the unique presence of OTUs in
each environment, as most of the bacteria associated with
either group of hellbenders is commonly found in environ-
mental habitats [59, 60]. However, it is also likely that captiv-
ity provides a favorable environment for certain bacteria to
successfully grow or outcompete against other skin microbes.
In addition, we recorded less bacteria of the phylum
Verrucomicrobia in captive eastern hellbenders (mainly a sin-
gle OTU assigned to the genus Luteolibacterwhich was iden-
tified in captive eastern hellbenders, but significantly enriched
in wild individuals). Verrucomicrobia are common microbes
of aquatic and soil habitats [61], and the genus Luteolibacter
has been described in high abundance in wild eastern hellben-
ders outside of Missouri [9]. As such, it is likely that
Luteolibacter is common in wild eastern hellbender habitats,
transmitted vertically between generations, or unable to sur-
vive in the captive environment. Therefore, current captive-
rearing conditions may alter the assembly of hellbender cuta-
neous microbiotas by restricting exposure to common envi-
ronmental microbes, limiting the inheritance/permanence of
microbes, and selecting for divergent microbial structure.

It is important to acknowledge that the captive hellbenders
sampled in our study have remained in captivity since first
brought into the zoo as eggs. Thus, a strong effect of the
environment throughout development can explain the signifi-
cant patterns of microbial community structure observed. As
such, more research needs to evaluate how hellbenders, and

other amphibians, develop associations with natural microbes
throughout development in the wild. Amphibians can acquire
microbes by direct contact between individuals (i.e., both hor-
izontal and vertical transfer), or through colonization from
environmental reservoirs [62–64]. Vertical transmission ofmi-
crobial symbionts is a probable mechanism through which
microbial symbiont uptake occurs in hellbenders. Male hell-
benders exhibit parental care of eggs and larvae [23], suggest-
ing the presence of microbial symbiont inheritance [64, 65].
Horizontal transmission is also probable as adult hellbenders
interact regularly throughout their lifetime, either through ter-
ritorial bouts [66, 67], breeding [23], or cohabitation of shelter
rocks [68, 69]. In addition to inter-host transmission mecha-
nisms, previous research on wild hellbenders has found over-
lap in the skin microbiota and environmental material (e.g.,
river water) suggesting that environmental reservoirs also play
a role in the assembly of hellbender skin microbiotas [9]. As
such, more research needs to investigate the assembly mech-
anisms, chronological variation, and reservoirs of the skin
microbiota of hellbenders and other amphibians.

In our case, differences in community composition translat-
ed into divergence of predicted metabolites. One caveat, how-
ever, is the fact that our predicted metabolite analysis only
applies to a set of OTUs that have been previously cultured
and sequenced. Therefore, we were unable to characterize
functionality of novel bacteria such as the common
Luteiobacter sp. In addition, our methodology (i.e.,
metabarcoding) restricted our ability to evaluate whether the
functional genes identified are expressed by members of the
community or present in dormant microbes. Therefore, our
results are conservative in that they may not include a full
functional profile of the active microbial community. Still,
we were able to observe divergence in potential functional
profiles between wild and captive hellbenders for both hellben-
der subspecies based on the subset of OTUs analyzed. Captive
hellbenders of both subspecies possessed a higher number of
xenobiotic degrading genes, indicating that captive amphibians
may experience increased exposure to xenobiotics. In the case
of hellbenders, possible sources of xenobiotics are not limited
to, but could include antibiotics used to treat infectious diseases
or biphenols released from plastic tubing [29, 70]. Diverse
metabolism-related genes were highly associated with wild
versus captive individuals among both subspecies, indicating
a higher degree of metabolic plasticity in the microbiota of
wild hellbenders. In freshwater bacterioplankton communities,
the contribution of metabolic plasticity to colonization resis-
tance and functional redundancy in response to environmental
shifts has deemed it an evolutionary important trait [71]. As a
result, a high degree of metabolic plasticity in the microbiota of
wild hellbenders can result in higher resistance, resilience, or
functional redundancy in response to environmental distur-
bances (e.g., translocations, pollution, temperature variations,
pathogen invasion) [72].
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Conservation Implications and Future Directions

Our exploration of the cutaneousmicrobiota of wild and captive
hellbenders provides important considerations for the ex situ
management of this species. We noted strong structure in the
skin microbial community composition between wild and cap-
tive hellbenders.Microbiota structure translated into differences
in the predicted metagenome of wild and captive individuals as
well. As such, we can expect captive hellbenders to experience
alternative microbial structure and function upon reintroduction
into the wild. In Missouri, previous reintroduction attempts
using hellbenders raised at the St. Louis Zoo have been mod-
erately successful with annual survival rates of up to 75% [73],
suggesting that captive-raised individuals fare well in the wild
despite possessing alternative microbiotas. Still, reintroduction
programs throughout the range of the eastern subspecies (e.g.,
Indiana, New York) are smaller than Missouri’s, release far
fewer hellbenders, and have noted far lower survival rates (0–
53%) which are attributed to predation, flooding, and disease
[29, 30, 74]. Given the increased risk of disease associated with
depauperate microbial communities in amphibians [75], micro-
biota management in captivity merits consideration in hellben-
der captive-rearing programs as a mean to increase survival
rates in states where risks of reintroduction failures are higher.

Incorporating environmental reservoirs (i.e., river water or
substrate) into captive hellbender enclosures has been previ-
ously suggested as a way to assimilate microbiotas to that of
wild counterparts [9]. Managers should be aware that micro-
bial supplementations may introduce harmful pathogens into
captive stock, and care should be taken to monitor the health
of supplemented individuals and provide treatment in the
event of an infectious disease outbreak. However, the benefits
of microbial supplementations might outweigh potential risks,
as previous studies have shown that environmental reservoirs
can be successful in preserving wild-type community compo-
sition and/or supplementing depauperate microbial communi-
ties in the skin of captive plethodontid salamanders [16, 63].
In addition, given that vertical transmission of microbes
among generations of hellbenders is likely due to the presence
of parental care in this species, the skin microbiota of adult
individuals could also serve as a source of microbial symbi-
onts for captive-reared hellbenders. Microbial transplants
using skin washes have been previously implemented to trans-
fer anti-pathogenic bacteria from one amphibian species to
another [76]. However, transplant trials showed little to no
success in the incorporation of foreign microbes into the re-
cipients’ skin, likely due to host-specific immune function
[76]. As such, there is a need to evaluate whether a similar
pattern is evident in intraspecies microbial transplants, where
host species-specific defenses may not be an issue.

Continuing to explore the assembly, maintenance, and
function of amphibian microbiomes is crucial for developing
successful implementations for the ex situ management of

hellbenders and other amphibians. Given the role of the gut
microbiome in organismal health in other vertebrates [6], there
is a need to expand microbial community surveys to the gut of
captive and wild amphibians in order to determine which fac-
tors are more important in shaping the gut microbiota (e.g.,
captive diets, environmental reservoirs) [77]. In addition, fu-
ture studies should evaluate how captivity-associated
microbiotas impact the health and survivorship of captive-
reared individuals after release into the wild. If microbial sup-
plementation is to be implemented in captivity, it is essential to
evaluate the effects that exposure to novel microbes may be-
stow in captive stock, characterize differences in microbiota
composition between control and treatment individuals, and
assess the microbial communities of treatment and control
groups following reintroductions. In addition, more work
needs to characterize temporal variation, role of microbial
inheritance, and contribution of different environmental reser-
voirs to the assembly of the amphibian cutaneous microbiota.
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