
SPATIAL GENETIC AND DISTRIBUTION MODELING FOR THE 

CONSERVATION OF HELLBENDER SALAMANDERS 

by 

Emily Boersma McCallen 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

Department of Forestry and Natural Resources 

West Lafayette, Indiana 

August 2018 

  



ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10831543

10831543

2018



ii 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Rod Williams, Co-chair 

Department of Forestry and Natural Resources 

Dr. Songlin Fei, Co-chair 

Department of Forestry and Natural Resources 

Dr. Jeffrey Holland 

Department of Entomology 

Dr. Patrick Zollner 

Department of Forestry and Natural Resources 

 

Approved by: 

Dr. Robert Wagner 

Head of the Graduate Program 



iii 

 

To Aaron, the one who started this all 

 



iv 

 

ACKNOWLEDGMENTS 

 I give special thanks to my advisors Dr. Rod Williams and Dr. Songlin Fei for their 

infinite patience and encouragement during this daunting process. I thank the members of my 

committee Dr. Jeffrey Holland and Dr. Patrick Zollner for their guidance and wisdom in the 

development of these projects. I thank my master’s advisor Dr. Karen Gaines and my 

undergraduate advisor Dr. Paul Switzer for their mentorship when I was just figuring out how 

science works. I thank all of my amazing past and current lab mates for offering constructive 

feedback without judgement, but especially Dr. Obed Hernandez-Gomez, Dr. Erin Kenison, and 

Dr. Gabriela Nunez-Mir.  

I thank all of my field and GIS technicians including Elizabeth Gilchrist, Kodiak 

Hengstbeck, Luke Hoehn, Kimberly Ordonez, Weston Schrank, Brian Tornabene, and Brandon 

Zinman for all of their heavy lifting (literally and figuratively). I thank O’Bannon Woods State 

Park for their hospitality, but especially Stanely Baelz and Bob Sawtelle. I thank all of our 

project partners for truly making this a range-wide effort including Sheena Feist, Dan Feller, 

Robin Foster, Michael Freake, James Godwin, John Groves, Paul Hime, Greg Lipps, Amy 

McMillan, Edward Thompson, Shem Unger, David Weisrock, and Lori Williams. This project 

could not have been possible with support provided by the Indiana Department of Natural 

Resources (grants  T7R15 and T7R17).  

 I thank all of my family, but especially my mom Glory Boersma and my husband Aaron 

McCallen for their constant, unwavering support. I thank my son, and sunshine, Warren Wallace 

for giving me a reason to smile every day. Finally, I thank all of the amazing women who have 

cared for my baby as if he was their own so I could spend my days thinking about salamanders.  

   



v 

 

TABLE OF CONTENTS 

 

TABLE OF CONTENTS ..................................................................................................................... v 

LIST OF TABLES............................................................................................................................... vi 

LIST OF FIGURES ............................................................................................................................vii 

ABSTRACT ......................................................................................................................................... ix 

CHAPTER 1. USING A MIXED EFFECTS MODEL TO ACCOUNT FOR GENETIC 

STRUCTURE IMPROVES PERFORMANCE IN AN ISOLATION BY ENVIRONMENT 

MODEL OF A THREATENED SALAMANDER (CRYPTOBRANCHUS ALLEGENIANSIS) .... 1 

1.1 Abstract ........................................................................................................................................ 1 

1.2 Introduction ................................................................................................................................. 2 

1.3 Materials and Methods ................................................................................................................ 4 

1.4 Results ........................................................................................................................................ 12 

1.5 Discussion .................................................................................................................................. 14 

1.6 Literature Cited.......................................................................................................................... 18 

1.7 Tables ......................................................................................................................................... 26 

1.8 Figures........................................................................................................................................ 28 

CHAPTER 2. A REGIONAL APPROACH TO IMPROVE RANGE-WIDE SPECIES 

DISTRIBUTION MODELS OF IMPERILED SPECIES ............................................................... 33 

2.1 Abstract ...................................................................................................................................... 33 

2.2 Introduction ............................................................................................................................... 34 

2.3 Materials and Methods .............................................................................................................. 37 

2.4 Results ........................................................................................................................................ 43 

2.5 Discussion .................................................................................................................................. 45 

2.6 Literature Cited.......................................................................................................................... 49 

2.7 Figures........................................................................................................................................ 60 

APPENDIX 1. Chapter 1 supplemental material ............................................................................. 67 

APPENDIX 2. Chapter 2 supplemental material ............................................................................. 77 

VITA.................................................................................................................................................... 88 

 



vi 

 

LIST OF TABLES 

Table 1-1. The number of locations and individual hellbenders (Cryptobranchus alleganiensis) 

sampled for genetic analysis per population and sub-population. ...................................... 26 

Table 1-2. The mean BIC value over all levels of model structure (n=5) for each geographic 

distance variable used to model isolation by distance. ........................................................ 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

LIST OF FIGURES 

Figure 1-1. The geographic boundaries partitioning major genetic populations (A) and 

subpopulations (B) of hellbenders (Cryptobranchus alleganiensis)................................... 28 

Figure 1-2. The geographic distance variables (A) and mixed model structures (B) used to model 

isolation by distance in the hellbender (Cryptobranchus alleganiensis) genome. Models 

were fit using each geographic distance variable and mixed model structure and compared 

using BIC values .................................................................................................................... 29 

Figure 1-3. Model fit (A) and mean isolation by environment coefficient intensity (B) across five 

models accounting for increasingly greater amounts of genetic structure in the hellbender 

(Cryptobranchus alleganiensis) isolation by distance relationship. ................................... 30 

Figure 1-4. A comparison of isolation by environment (IBE) model results (coefficient intensity 

and p-values) and locus-specific association test results (mean number of associated loci) 

for each tested environmental variable for a model that accounts for genetic structure (A) 

and a default model that does not (B) in hellbender (Cryptobranchus alleganiensis) IBE 

models. Perfect agreement of the two methods would result in a positive linear trend line.

 ................................................................................................................................................. 31 

Figure 1-5. A map of genomic vulnerability across the range of the hellbender (Cryptobranchus 

alleganeinsis). Color gradient values are stretched using quantile classification with 100 

classes. Higher values represent areas projected to have greater distances between current 

climate optima and future projected conditions. .................................................................. 32 

Figure 2-1. The range of the eastern (Cryptobranchus alleganiensis alleganiensis) and Ozark 

(Cryptobranchus alleganiensis bishopi) hellbender subspecies. ........................................ 60 

Figure 2-2. The division of physiographic provinces across the modeled extent of the eastern 

hellbender (Cryptobranchus alleganiensis alleganiensis) range. ....................................... 61 

Figure 2-3. Summaries of the modeled data by physiographic province across the study range, 

including the number of captured Cryptobranchus alleganiensis (a), number of sampling 

locations (b), number of sampling occasions (c), and the mean number of hellbenders 

captured per sampling occasion (d). ..................................................................................... 62 

Figure 2-4. Metrics of model performance including area under the ROC curve (a), area under the 

PR curve (b), calibration plot slope (c), calibration plot R-squared (d), and calibration plot 



viii 

 

intercept (e) for the global dataset and averaged across all regions for three final 

Cryptobranchus alleganiensis species distribution models................................................. 63 

Figure 2-5. Final SDM model relative occurrence probabilities stretched using quantile 

classification with 20 classes. ................................................................................................ 64 

Figure 2-6. Summaries of the random effects in three final Cryptobranchus alleganiensis species 

distribution models including one with a region-specific intercept (M1), one with a region-

specific intercept and an autocovariate (M2), and one with a region-specific intercept and 

a region-specific autocovariate (M3). ................................................................................... 65 

Figure 2-7. Summaries of the fixed effects in three final Cryptobranchus alleganiensis species 

distribution models including one with a region-specific intercept (M1), one with a region-

specific intercept and an autocovariate (M2), and one with a region-specific intercept and 

a region-specific autocovariate (M3). ................................................................................... 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

ABSTRACT 
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Major Professor: Rod Williams 

 

 Ecological data is inherently spatial; however, it is still the norm to model ecological data 

as spatially invariant. Failure to account for spatial structure in response variables and modeled 

relationships can result in inflated coefficient values, shifts in the relative importance and sign of 

predictors, cross-scale contradictions in relationships, and reduced predictive power due to the 

averaging of modeled relationships. When ecological models are used to support conservation 

decision-making, model error can be costly leading to both misallocation of limited resources 

and distrust of science-based management.  

My dissertation focuses on developing methods to account for spatial structure in two 

models commonly used to inform conservation decisions. Both chapters focus on the imperiled 

hellbender salamander (Cryptobranchus alleganiensis) and were designed to provide guidance 

on the conservation and management of a species that is facing precipitous declines throughout 

much of its range. In chapter one, I modeled the relationship between the hellbender genome and 

climate and stream variables across the range of the species. I extended multiple matrix 

regression into a mixed modeling framework to account for strong spatial population structuring. 

The approach improved model fits, shrunk coefficient estimates, and increased the concordance 

of model results with an independent analysis of locus-specific environmental associations. The 

results of the model were used to forecast genomic vulnerability across the range of the species 
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and the resulting map suggested a potential genetic mismatch between current and future 

conditions in portions of the range that accommodate stable populations.  

In chapter two, I developed a species distribution model to help target sampling and 

translocation locations for eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). It 

extended presence-only modeling into a mixed modeling framework to help account for 

autocorrelation and nonstationarity in the intensity of hellbender occurrences and unexplained 

environmental heterogeneity across physiographic provinces. The spatially explicit approach 

improves overall model discrimination and dramatically improves model performance in regions 

most in need of conservation guidance. Taken together, the chapters provide flexible methods to 

improve the performance of common ecological models and tangible products to support 

hellbender conservation.    
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CHAPTER 1. USING A MIXED EFFECTS MODEL TO ACCOUNT FOR 

GENETIC STRUCTURE IMPROVES PERFORMANCE IN AN 

ISOLATION BY ENVIRONMENT MODEL OF A THREATENED 

SALAMANDER (CRYPTOBRANCHUS ALLEGENIANSIS) 

1.1 Abstract 

 A common methodological approach to understand patterns of genetic variation across 

environmental gradients is to use multiple matrix regression (MMR) to disentangle the effects of 

isolation by distance (IBD) and isolation by environment (IBE) in genomic data. However, when 

species display hierarchical population structuring, MMR performs poorly and model results 

may be misleading for many taxonomic groups. I explored patterns of IBD and IBE in the 

genetically structured hellbender salamander (Cryptobranchus allegeniansis) to elucidate 

conservation implications across the geographic range of this threatened species. I used a mixed 

modeling approach to account for population structure that improved model fit (with a 55% 

reduction in BIC in the structured model compared to the null model) and reduced IBE 

coefficient inflation (with a 64% reduction in IBE coefficient intensity in the structured model 

compared to the null model). Accounting for genetic structure in the data also greatly improved 

concordance between the IBE model results and locus-specific environmental association tests. I 

extended the results of the analysis to forecast genomic vulnerability across species range. My 

results suggest a spatial mismatch between the hellbender genome and future climate conditions 

in portions of the species range that currently contain the only remaining stable populations. 

While the conservation implications of our study are specific to hellbenders, the mixed modeling 

methodology represents a natural extension of MMR that can be used to improve IBD and IBE 

model results in any taxonomic group that displays moderate to high levels of population 

structure.        
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1.2 Introduction  

Exploring associations between genotypes and environmental variation is a natural 

extension of landscape ecology since it can shed light on underlying mechanisms of genetic 

change in taxonomic groups. Environmental associations may be explored in genome-wide 

differentiation (Wang & Bradburd, 2014) or in individual loci (Frichot & François, 2015; 

Günther & Coop, 2013), and the methods can be used concordantly to derive multiple lines of 

evidence for genome-environment relationships (Bay et al., 2018). The partial-mantel test 

(Smouse, Long, & Sokal, 1986), and its natural extension multiple matrix regression (MMR; 

Legendre, Lapointe, & Casgrain, 1994; Wang, 2013), are the most commonly used methods for 

detecting environmental signals in genome-wide studies (Storfer, Murphy, Spear, Holderegger, 

& Waits, 2010). In both methods, a pairwise genetic distance matrix is statistically related to 

both geographic and environmental distance matrices. The geographic distance matrix is 

included to account for isolation by distance (IBD; Wright, 1943) a common pattern that occurs 

when genomic changes due to drift accumulate faster than can be ameliorated by gene flow 

between populations (Rousset, 1997). The relationship between genomic variation and 

environmental variables after accounting for IBD is known as isolation by environment (IBE; 

Wang & Bradburd, 2014), and the relative strength of each process can be inferred from the 

coefficient values of MMR. However, these processes are inherently complicated and it can be 

difficult to disentangle the influence of neutral and environmental factors on the genome.  

Failure to fully account for neutral genetic processes prior to exploring environmental 

relationships can lead to spurious associations and misleading results (Meirmans, 2012). Matrix-

based approaches assume a linear IBD relationship, which is unlikely to hold true at broad 

scales, but this limitation may be addressed with simple transformations of distance variables 

(Legendre & Fortin, 2010; Wagner & Fortin, 2015). Furthermore, if migration movements are 
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directional, a more biologically relevant predictor such as stream distance (Mullen, Woods, 

Schwartz, Sepulveda, & Lowe, 2010), least-cost transect (Van Strien, Keller, & Holderegger, 

2012), or resistance surface (McRae, 2006) may better explain neutral genetic patterns. However, 

a more substantial drawback of matrix-based models is that they are non-spatial, and do not 

adequately account for neutral genetic processes in species that display hierarchically structured 

populations. Since population structuring is common, particularly in vertebrate species 

(Frankham, Ballou, & Briscoe, 2010), a simple method to account for this complication could 

improve the robustness of IBD and IBE modeling results for many taxonomic groups.  

Under hierarchical genetic structuring, populations of individuals clustered together in 

geographic space are more genetically similar than would be expected by IBD alone which leads 

to spatial autocorrelation in the genetic distance matrix (Meirmans, 2012; Wagner & Fortin, 

2015). Failure to account for this inherent spatial autocorrelation in partial Mantel and MMR 

tests results in an inflation of coefficient values and an increased likelihood of detecting spurious 

relationships (Guillot & Rousset, 2013). Populations represent basic units of genetic 

heterogeneity on the landscape, and the strength of the IBD relationship between populations is 

likely to vary based on individual population demography and colonization history (Orsini, 

Vanoverbeke, Swillen, Mergeay, & Meester, 2013; Taberlet, Fumagalli, Wust-Saucy, & Cosson, 

1998). Performing separate tests for individual populations solves the problem of spatial 

autocorrelation (Kuchta & Tan, 2005), but reduces the statistical power of test and breaks up the 

environmental variation in question. Utilizing a mixed modeling framework to account for 

population structure in MMR analysis may represent an effective way to model complicated IBD 

and IBE relationships without sacrificing sample size or reducing the range of genetic and 

environmental variation under examination.  
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Herein, I explore this approach in a long-lived, aquatic salamander species, the 

hellbender (Cryptobranchus alleganiensis). Hellbender populations are declining and threatened 

throughout most of their range (Burgmeier, Unger, Sutton, & Williams, 2011; Foster, McMillan, 

& Roblee, 2009; Wheeler, Prosen, Mathis, & Wilkinson, 2003) with the Ozark subspecies 

(Cryptobranchus alleganiensis bishopi) listed as endangered and the eastern subspecies 

(Cryptobranchus alleganiensis alleganiensis) currently under consideration for listing under the 

endangered species act (Gould, 2011). Threats to hellbender populations include habitat 

degradation disease, and limited gene flow among populations (Mayasich, Grandmaison, & 

Phillips, 2003). Moreover, it is uncertain how climate change may affect population persistence 

in this highly structured species. After determining the optimal IBE model, we extend the 

analysis to forecast genomic vulnerability across the range of the hellbender. Genomic 

vulnerability is a measure of the distance between projected future climate conditions and current 

local optima and may help identify locations where species are likely to face a genetic mismatch 

with conditions under climate change (Fitzpatrick & Keller, 2015, Bay et al., 2018). These 

results provide evolutionary insights into future threats for a species that is rapidly declining 

throughout much of its range.                              

1.3 Materials and Methods  

Study species and sampling design 

 Hellbenders are the largest amphibian in North America and are distributed broadly 

across the eastern United States with disjunct populations occurring in Missouri and Northern 

Arkansas (Fig. 1.1). Besides the two distinct hellbender subspecies, range-wide genetic analyses 

have revealed additional moderate (Unger, Rhodes, Sutton & Williams, 2013) to high (Hime, 

2017) levels of genetic structure. Analyses using the same SNP markers that were used in this 



5 

 

study provided evidence for four major genetic divisions in hellbenders (Fig. 1.1A; Hime 

personal communication).Ozark hellbenders, which occur in the Arkansas-White-Red region 

(Fig. 1.1A) and encompass their own subspecies, are the most genetically unique of the major 

demes (Hime, 2017). Eastern hellbenders in the Tennessee region (Fig. 1.1A) represent another 

major deme. Eastern hellbenders in Missouri are genetically similar to most hellbenders in the 

Ohio region (Fig. 1.1A); however, the Kanawha subregion, which is nested within the Ohio 

region, represents   a separate genetic deme (Fig. 1.1 A). There is evidence for finer-scale genetic 

structure within the Tennessee deme, the Ohio deme, and the Ozark deme leading to eight 

distinct subpopulations (Fig. 1.1B; Hime personal communication). Within these broad genetic 

divisions, patterns of IBD tend to follow a dendritic pattern corresponding to stream network 

distances (Hime, 2017; Unger, Chapman, Regester, & Williams, 2016). The sampling sought to 

capture the full extent of genetic and environmental variation across the broad range of 

hellbenders. Since the power to detect spatial genetic patterns is more dependent on the number 

of locations sampled than the number of individuals sampled per location (Landguth et al., 

2012), the primary focus was on maximizing the number of locations sampled. In total, 194 

hellbenders were sampled at 96 unique locations. Samples were obtained from all major 

watersheds and 14 out of 15 states known to contain hellbender populations. 

Methodological overview  

 The primary objective of this study was to determine whether extending multiple matrix 

regression into a mixed modeling framework could adequately account for population structure 

in IBE models. I hypothesized that a random intercept model, which allows intercepts to vary 

between each interdeme comparison group, could help account for discrepancies in baseline 

genetic differences between populations. A random slope-intercept model, which allows the 
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slopes of the geographic distance variable and intercepts to vary between each interdeme 

comparison group, could help account for baseline genetic differences between populations as 

well as differences in the strength of the IBD relationship across the range the species. Both of 

these modifications may serve to more realistically capture the pattern of neutral variation across 

the landscape and likelihood methods can be utilized to determine the optimal model structure. 

 To meet the primary objective I took the following approach: I first calculated distance 

matrices for genetic, geographic, and environmental distance variables. Since I was uncertain of 

the optimal geographic distance variable, I developed models for six different IBD variables 

(Fig. 1.2A) across all possible levels of model structure (Fig. 1.2B) and chose the best based on 

mean BIC scores. I then compared model fit (BIC) and average IBE coefficient intensity across 

five different levels of model structure that varied in how strongly they accounted for the 

inherent autocorrelation in the genetic data (Fig. 1.2B). Once I determined the optimal model 

structure, I compared the performance of the best fitting model with the performance of the 

default IBE model, by comparing the IBE coefficient values with the results of locus-specific 

environmental association tests. Following this approach I was able to determine whether this 

method could improve IBE model fits, decrease IBE coefficient inflation, and result in greater 

concurrence with independent tests of environmental associations.   

 The secondary objective of our analysis was to inform hellbender conservation using the 

best of the developed IBE models. Once I was satisfied with the performance of the optimal 

model, I interpreted the IBE coefficient values and extended the analysis to forecast genomic 

vulnerability across the range of the species. Genomic vulnerability maps can highlight which 

populations are least likely to adapt quickly enough to track future climate shifts. 

Distance Calculations  
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 The genetic data for this study was collected as part of a range-wide exploration of 

population structure in hellbenders (Hime, 2017). Double digest restriction site-associated DNA 

sequencing (ddRAD; Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) was used to develop a 

novel set of genetic markers distributed randomly throughout the hellbender genome. In total, the 

study produced a set of 54,532 variable loci sampled from both diploid chromosomes of 

individuals (for full details on marker development see Hime, 2017). To ensure none of the 

patterns were driven by missing values, we discarded markers missing more than 10% of data 

and individuals missing more than 25% of data. Since rare alleles are more likely to elicit false 

positives (Bay et al., 2018), we also removed markers with major alleles occurring in more than 

90% of total markers. Individuals from the Susquehanna watershed were also removed from the 

analysis because of a lack of lotic connectivity with the remainder of the range. This resulted in a 

data set of 9125 markers for 150 individuals. The individuals occurred at 83 locations across the 

range of the species (Table 1.1). The locations were well distributed across genetic populations 

and subpopulations (Table 1.1); however, one of the Ozark hellbender subpopulations only 

contained a single sampling location so I combined the two subpopulations into a single Ozark 

group for subpopulation level analyses. All analyses were performed in R v 3.4.3 unless 

otherwise mentioned.  

 In IBE studies, genetic distance is usually represented by linearized FST values (Wang & 

Bradburd, 2014). However, FST values are unreliable when they are estimated with fewer than 

five individuals per location (Willing, Dreyer, & Van Oosterhout, 2012), and I wanted to avoid 

aggregation to maintain the continuous nature of the environmental and genetic variation across 

the landscape (Shirk, Landguth & Cushman, 2017). To accomplish this task, I estimated genetic 

differentiation between individuals and averaged these metrics between locations. I used the 
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diss.dist function (Kamvar, Tabima, and Grünwald, 2014) to measure the number of allelic 

differences between all individuals since this metric performs well under model selection 

compared to other individual-based genetic metrics (Shirk et al., 2017). I recorded the number of 

comparisons between locations and assigned each averaged pairwise distance value to a 

population and subpopulation comparison group. 

 I calculated six different geographic distance variables for comparison (Fig. 1.2A). I 

calculated Euclidean distances between locations using the point distances command in the 

Geospatial Modeling Environment software (Beyer, 2012). Since dendritic patterns of IBD 

following stream networks are common in lotic species (Hughes, Schmidt, & Finn, 2009), I also 

calculated stream distances between locations. I used the network analysis toolbox in ArcMap v 

10.2.2 (Esri 2014) to build a stream network using all NHDPlus v2 FlowLine features (USGS 

2013) east of the Mississippi River and calculate linear distances between all locations. To help 

linearize the IBD relationship (Legendre & Fortin, 2010), I performed square root and log 

transformations on both Euclidean and stream distance matrices.   

 I modeled IBE in both stream and climate space. Climate is often assumed to be the most 

important environmental driver of genomic changes; however, since hellbenders are obligate 

aquatic salamanders and rarely leave their natal system (Mayasich et al., 2003), I hypothesized 

that the stream environment would be as important as the climactic environment for shaping the 

genome. I measured stream variation using eight attributes associated with NHDPlus v 2 

FlowLine features (USGS 2013), including stream level, stream order, upstream length, 

catchment area, upstream catchment area, maximum elevation, minimum elevation and slope 

(for a full description of the variables see Table S1.1). I used the standard 19 bioclimatic 
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variables (Table S1.2) derived from WorldClim version 1.4 (Hijmans, Cameron, Parra, Jones, & 

Jarvis, 2005) to summarize climate conditions across the hellbender range.  

 Since MMR analyses are sensitive to multicollinearity in predictor variables (Wagner & 

Fortin, 2015; Wang, 2013), I used principal components analysis (PCA) to derive orthogonal 

predictor variables in each environmental realm. To capture the full range of environmental 

variation in the range, I projected 100,000 random points within the delineated watersheds (Fig. 

1.1) using the Create Random Points tool in ArcMap version 10.2.2 (Esri 2014). After snapping 

and joining points to the closest NHD FlowLine feature, I extracted stream and climate variables 

for each point. Each PCA was performed with the princomp function using the correlation matrix 

of the variables. In both PCAs, the first five axes explained ~ 95% of the variation and were 

retained for further analysis (Tables S1.3 & S1.4).  

 I interpreted the stream principal component axes as measures of elevation, stream 

position (upstream vs. downstream), stream level, stream size, and slope (Table S1.3). I 

interpreted the climate principal component axes as measures of regional temperature and 

precipitation patterns (generally getting colder and dryer moving from the southeast to the 

northwest of the range), summer temperature and precipitation patterns, temperature seasonality, 

precipitation seasonality, and temperature range (Table S1.4). All retained stream and climatic 

variables were applied and mapped across the species range (Figs. S1.1 & S1.2) including the 

locations of the genetic sampling. Prior to MMR analysis, pairwise Euclidean distance values 

between each location were calculated for each environmental variable using the dist function.           

Multiple matrix regression  

 The first step of the modeling process was to determine the optimal geographic distance 

variable which I approached by fitting all possible geographic distance variables (Fig. 1.2A) 
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across all levels of model structure (Fig. 1.2B) and choosing the variable with lowest mean BIC 

score. For comparison purposes, I fit saturated models with all of the fixed environmental 

variables (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). Prior to analysis, I centered and scaled 

independent variables to standardize coefficients and checked for correlations among the 

independent variables. Since all correlation values were < 0.5, I did not remove any independent 

variables from the analysis. Only the upper half of distance matrices were used in the regression, 

but I did include zero geographic distance comparisons. All MMR models were fit using the 

number of comparisons at each location as a weighting variable, because it always significantly 

improved model fits. I used the lmer function to fit mixed models with maximum likelihood and 

specified correlated slope-intercept relationships in the slope-intercept models (Bates, Maechler, 

Bolker, & Walker, 2014). I fit unstructured models with the lm function.  

 Once the optimal distance variable was determined, I compared the performance of 

models with the best distance variable and different levels of model structure. The traditional 

linear MRM served as the null model comparison. I fit both random intercept and random slope-

intercept models at the population and subpopulation level (Fig. 1.2B). I compared model fit by 

examining BIC scores and performing likelihood tests with each additional level of added model 

complexity. I compared IBE coefficient intensity by averaging the absolute value of all 

environmental coefficient values in each final model. Once I determined the optimal model 

structure, I made a final comparison of model performance between the null model (with the best 

geographic distance variable but no model structure) and the optimal model (with both the best 

geographic distance variable and the best model structure).  

 I used locus-specific association tests to serve as independent measures of model 

accuracy. If an IBE model is accurate, I would expect IBE coefficient intensity at a particular 



11 

 

environmental axis and the number of loci associated with that axis to show a strong correlation. 

I would also expect variables with at least one associated locus to have significant pseudo p-

values so I performed permutational testing on IBE coefficients. During the permutational testing 

I was interested only in the significance level of the environmental variables, so I did not 

permute the geographic distance variable. To avoid breaking up the spatial structure in the 

mixed-model, I permuted environmental variables within their random variable comparison 

groups (Guillot & Rousset, 2013; Meirmans, 2012). I used 1000 permutations and a two-tailed 

test to calculate pseudo p-values for each variable.   

 I used latent factor mixed model analysis (LFMM; Frichot & François, 2015) to 

determine the number of individual loci associated with each environmental axis. LFMM is a 

Bayesian approach that uses latent factors to control for underlying population structure before 

testing for associations between allele frequencies and the environment. Following the 

developers guidelines, I used the function snmf to calculate the cross-entropy across five runs for 

each value of K (representing ancestral populations) and graphed the results to determine where 

the cross-entropy values plateaued (Frichot & François, 2015). Cross-entropy values plateaued 

between 11 and 15 K (Fig. S1.3), so I performed locus-specific association testing on each 

environmental variable at each level of K from 11 to 15 using the function LFMM (Frichot & 

François, 2015). Since the Bayesian output of the analysis can be variable, I ran each test five 

times. As suggested by the developer at small sample sizes, I increased the default burn-in period 

of 5,000 to 10,000 and the default number of iterations from 10,000 to 20,000. I took the median 

z-value for each locus from the series of five runs and adjusted them for multiple testing using a 

10% false discovery rate (Benjamini & Hochberg, 1995). I recorded and averaged the number of 

associated loci over all values of K (Table S1.5). Finally, I compared the intensity and pseudo p-
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value of each IBE coefficient in the null and structured models with the mean number of loci 

associated with each corresponding environmental axis. 

Genomic Vulnerability                                                                                                                     

 I used the results of the best model to develop a genomic vulnerability map. Genomic 

vulnerability is the distance between projected future climate conditions and the current local 

optima. This analysis finds the weighted (based on the model coefficient value of the 

environmental variable) Euclidean distance between current climate conditions and a set of 

future climate conditions. I took the median value from five validated global climate models 

(Table S1.6) for future climate forecasts. This ensemble approach improves regional climate 

prediction because it smooths extreme values (Pierce, Barnett, Santer, & Glecker, 2009). I used 

climate projections for 2050 based on a moderate emissions scenario (representative 

concentration pathway 4.5; Van Vuuren et al., 2011). Once values were extracted, I used the 

predict function to apply the principal components transformation on the new data. Climate 

PCAs that were retained in the final model were projected across the range of the hellbender. I 

calculated the weighted Euclidean distance between current conditions and projected future 

conditions using model environmental variable importance as a weighting factor. We visualized 

this raster surface of genomic vulnerability across the hellbender range.     

1.4 Results 

Model comparisons 

 Accounting for genetic structure using a mixed modeling framework improved model 

fits, decreased IBE coefficient inflation, and increased model agreement with locus-specific 

association tests. Model fits improved with increasing levels of model structure, though the 

greatest improvement came from adding a random intercept component at the population level (a 
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39% reduction in BIC score), and gains from increasing the number of divisions (a mean 10% ± 

0.03 reduction in BIC score) and adding a random slope (a mean 9% ± 0.03 reduction in BIC 

score) were more modest (Fig. 1.3A). However, likelihood tests did suggest that the most 

complex model fit the data significantly better than the others, and the subpopulation level slope-

intercept model was used for the final comparison against the null model. Overall, the BIC score 

of the most complex model was 55% lower than the null model (Fig 3A). IBE coefficient 

intensity showed a similar pattern (Fig. 1.3B), with the greatest decrease in the mean value 

occurring with the addition of a population level random intercept (a 55% reduction) and smaller 

decreases occurring with the addition of a random slope component (a mean 24% ± 0.07 

reduction). Overall, mean coefficient intensity was 64% lower in the most complex model than 

the null model (Fig. 1.3B).    

 The structured model showed a high degree of concurrence with the locus-specific tests 

(Fig. 1.4A). The five environmental axes that had twoor more associated loci had higher 

coefficient values and pseudo p-values lower than 0.05. There was one variable that was deemed 

significant by the model that had no associated loci in the corresponding locus-specific test. The 

unstructured model showed a very low degree of concurrence with the locus-specific tests (Fig. 

1.4B). The model was unable to correctly select the three variables with the highest number of 

associated loci. It also incorrectly selected three variables at the 0.05 alpha level that showed no 

associated loci in the corresponding locus-specific tests.  

 In the comparison of geographic distance variables, stream distances always fit better 

than their Euclidean distance counterparts (Table 2). The square root stream distance variable 

demonstrated the best fit over all levels of model structure and was retained for subsequent 

model comparison (Table 1.2). The strongest environmental relationship detected in the IBE 
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model was with temperature range (Table S1.7). Stream position, stream level, stream size all 

had slightly smaller coefficient intensities (Table S1.7). Temperature seasonality and 

precipitation seasonality displayed smaller, but still significant effects. The IBE model 

association with precipitation seasonality was not detected by the locus-specific association test.  

 Since the subpopulation level slope-intercept model had the best fit and demonstrated 

high concordance with locus-specific tests, we used its coefficient intensity values to develop the 

genomic vulnerability forecasting. Because precipitation seasonality was not detected by the 

locus-specific association test, we took a conservative approach and did not include it as a 

variable in the genomic vulnerability forecasting. The greatest levels of genomic vulnerability 

occurred in a patch across Ohio, Kentucky, Tennessee, and Alabama (Fig. 1.5). There is also a 

patch of more moderate distance values across eastern Tennessee, North Carolina, Virginia, and 

West Virginia (Fig. 1.5). Genomic vulnerability is minimal in Missouri, eastern Kentucky, 

Indiana, Mississippi, and much of Ohio, New York, and Pennsylvania (Fig. 1.5).        

1.5 Discussion  

 My results indicate that utilizing a mixed modeling framework in MMR can be an 

effective way to account for hierarchical population structure in models of isolation by distance 

(IBD) and isolation by environment (IBE). The null model performed poorly against mixed 

models in likelihood tests. Average environmental coefficients were more than twice the 

intensity in the null model compared to the mixed models. Even with permutational testing, the 

null model detected spurious environmental relationships and failed to detect true environmental 

relationships as demonstrated by the lack of concurrence with locus-specific tests. These results 

further emphasize the importance of explicitly accounting for genetic structure in IBE models as 

failure to do so leads to inaccurate results (Guillot & Rousset, 2013; Meirmans, 2012). These 
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results reinforce that patterns of IBE can often be detected, but effectively pulling apart patterns 

of neutral and adaptive variation in genome-wide studies is difficult (Wang & Bradburd, 2014). 

Neutral processes are likely to explain the majority of genomic variation since environmental 

associations generally occur in less than 5% of tested loci (Bay et al., 2017). A thorough 

investigation of the appropriate model structure and IBD relationship may be required to detect 

subtle IBE relationships orders of magnitude weaker than neutral patterns. Failure to do so can 

lead to inflated IBE coefficients and misleading results. 

 While more sophisticated methods have been developed to account for neutral genetic 

structure in IBE models (Bradburd, Ralph, & Coop, 2013; Dyer, Nason, & Garrick, 2010), this 

method represents a natural extension of multiple matrix regression which is an intuitive and 

commonly used approach to model patterns of IBD and IBE (Storfer et al., 2010; Wang & 

Bradburd, 2014). Furthermore, mixed modeling has been embraced by the ecological community 

as a means of accounting for inherent variation in observational studies, and packages are 

already available in common statistical software to fit these models (Bolker et al., 2009). The 

amount of genetic structure seen in hellbenders is common in several taxonomic groups 

(Frankham et al., 2010), and this method may be used to account for more moderate levels of 

differentiation as long as population divisions are known a prioiri. An additional advantage of 

this approach is that likelihood tests can be used to determine what level of genetic and model 

structure best improves IBE model fits.  

 This study emphasizes that lotic species may warrant special consideration in IBE 

modeling, particularly in the choice of independent variables. We found that models using 

stream distances better accounted for patterns of IBD than Euclidean distances. We also found 

that variables describing stream environment were just as strongly associated with genome-wide 
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variation as variables describing climatic gradients. In particular, stream position, stream level, 

and stream size gradients all showed associations with the hellbender genome. Given the wide 

variety of stream conditions across the hellbender range and the ability of variation in the lotic 

environment to cause morphological and physiological changes in hellbenders (Kenison & 

Williams, 2018); it is unsurprising that stream conditions may be driving genetic differentiation. 

Climate conditions were also important, in particular temperature variability and annual 

temperature range. Temperature adaptations may be common in amphibians distributed across a 

latitudinal gradient (Orizaola, Quintela, & Laurila, 2010; Snyder & Weathers, 1975). 

Temperature may be a strong selective force for hellbenders specifically, since they rely on high 

levels of dissolved oxygen for cutaneous respiration (Guimond & Hutchison, 1973), and 

dissolved oxygen levels are directly related to stream temperatures.   

 The environmental associations detected in this study have implications for hellbender 

conservation efforts. There have already been recommendations that hellbender translocations 

only occur within major population boundaries, because of the strong neutral genetic structure of 

the species (Hime, 2017; Unger et al., 2013). I suggest that environmental matching should also 

be considered when moving hellbenders for conservation purposes. Breaking the affiliation 

between genome and the environment can reduce the probability of successful establishment 

(Bragg, Supple, Andrew, & Borevitz, 2015). Both lotic and climate gradients can vary widely 

across the geographic boundaries of a given population, and condition matching, particularly in 

the environmental variables that have been tested and show associations, may improve post-

translocation survival rates (McKay, Christian, Harrison, & Rice, 2005). However, in genetically 

structured populations, new alleles represent new variation for selection to act upon so there is a 

tradeoff to keeping conservation actions as local as possible (Aitken & Whitlock, 2013). 
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Optimally, detecting patterns of IBE can act as an early step in fully understanding the genetic 

architecture of a species (Bay et al., 2017). Since the markers are not mapped, I cannot associate 

them with particular regions of the genome or understand the linkage structure among them. 

Linking the environmentally associated loci to phenotypes would elucidate what traits are being 

acted upon by stream and climate variables.   

 The results of the genomic vulnerability mapping are also important in the context of 

hellbender conservation. Hellbenders have experienced declines throughout their range 

(Burgmeier et al., 2011; Foster et al., 2009; Wheeler et al., 2003), but current declines have been 

most consistently associated with forest removal and land use change (Jachowski & Hopkins, 

2018; Nickerson, Pitt, Tavano, Hecht, & Mitchell, 2017). The relatively high genomic 

vulnerability in regions that currently contain the only remaining stable hellbender populations 

(Eastern Tennessee, North Carolina, Virginia and West Virginia; Mayasich et al., 2003) is 

potentially concerning. Genomic vulnerability has been associated with population declines in 

migratory birds (Bay et al., 2018), and climate shifts appear likely to impose additional 

challenges to a species already stressed by anthropogenic changes. This may present a situation 

where we need to act before declines are detected, because the long generation time and life span 

of hellbenders makes them more likely to incur an extinction debt (Kuussaari et al., 2009). It 

should be noted that the genomic vulnerability results rely on several important assumptions 

including that the sampling reflects variation across important environmental gradients, that 

important environmental gradients are adequately measured and modeled at an appropriate 

spatial scale, and that the genetic data adequately captures the most important environmental 

associations (Bay et al., 2018). The last limitation is of particular concern since sampled markers 

represent a small and random sample of a large genome. While there are limitations to my 
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recommendations, they represent a science-based management strategy utilizing the most current 

genetic and analytical methods to generate conservation recommendations. 

 Misleading genetic and ecological models can be costly if they lead to misinformed 

conservation decisions and may erode the trust of stakeholders in science-based management 

(Addison et al., 2013). Using concurrent methods (i.e. genome wide and locus-specific 

association tests) to provide multiple lines of evidence can help validate model results. Several 

studies have demonstrated that moderate to severe hierarchical genetic structure in the genome 

must be adequately accounted for prior to modeling environmental associations, and the method 

demonstrated herein provides a simple way to do so. I suggest that IBE studies of any taxonomic 

group displaying hierarchical levels of genetic structure use a mixed model framework or other 

tested method of controlling for structure (Bradburd et al., 2013; Dyer et al., 2010) if the results 

are intended to draw evolutionary conclusions or help guide species conservation and 

management efforts.   
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1.7 Tables 

Table 1-1. The number of locations and individual hellbenders (Cryptobranchus alleganiensis) 

sampled for genetic analysis per population and sub-population. 

 

Populations # of Locations # of Individuals 

Kanawha 8 14 

Ohio 23 48 

Ozark 4 10 

Tennessee 48 78 

Subpopulations # of Locations # of Individuals 

Black 3 4 

Kanawha 8 14 

Gasconade 4 11 

Hiawassee-Ocoee 15 23 

Ohio  19 37 

Tennessee 25 39 

Upper French Broad 8 16 

White 1 6 
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Table 1-2. The mean BIC value over all levels of model structure (n=5) for each geographic 

distance variable used to model isolation by distance.   

 

Distance Mean BIC SE 

Euclidean -9421.2 1097.5 

Log Euclidean -10052.8 927.9 

Square Root Euclidean -9862.0 964.2 

Stream -10247.1 721.5 

Log Stream -10202.8 866.6 

Square Root Stream  -10931.3 697.5 
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1.8 Figures  

 

Figure 1-1. The geographic boundaries partitioning major genetic populations (A) and 

subpopulations (B) of hellbenders (Cryptobranchus alleganiensis). 
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Figure 1-2. The geographic distance variables (A) and mixed model structures (B) used to model 

isolation by distance in the hellbender (Cryptobranchus alleganiensis) genome. Models were fit 

using each geographic distance variable and mixed model structure and compared using BIC 

values 
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Figure 1-3. Model fit (A) and mean isolation by environment coefficient intensity (B) across five 

models accounting for increasingly greater amounts of genetic structure in the hellbender 

(Cryptobranchus alleganiensis) isolation by distance relationship. 
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Figure 1-4. A comparison of isolation by environment (IBE) model results (coefficient intensity 

and p-values) and locus-specific association test results (mean number of associated loci) for 

each tested environmental variable for a model that accounts for genetic structure (A) and a 

default model that does not (B) in hellbender (Cryptobranchus alleganiensis) IBE models. 

Perfect agreement of the two methods would result in a positive linear trend line.  
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Figure 1-5. A map of genomic vulnerability across the range of the hellbender (Cryptobranchus 

alleganeinsis). Color gradient values are stretched using quantile classification with 100 classes. 

Higher values represent areas projected to have greater distances between current climate optima 

and future projected conditions.   
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CHAPTER 2. A REGIONAL APPROACH TO IMPROVE RANGE-WIDE 

SPECIES DISTRIBUTION MODELS OF IMPERILED SPECIES 

2.1 Abstract   

 Presence-only species distribution models are important tools for conservation but lack 

methods to account for regional differences in relationships or spatial autocorrelation. Failure to 

account for these spatial complications can lead to inflation of coefficient values and poor 

regional model performance. Recent methodological advances have revealed the equivalency of 

maximum entropy presence-only modeling and appropriately weighted generalized linear 

logistic and Poisson models. I extended the method into a mixed modeling framework to account 

for environmental heterogeneity, spatial autocorrelation, and nonstationarity in a range-wide 

species distribution model for the imperiled, aquatic eastern hellbender salamander 

(Cryptobranchus alleganiensis alleganiensis). I took a regional approach to develop a range-

wide species distribution model. Since I knew baseline occurrence levels of hellbenders differed 

by physiographic province, I used the provinces to delineate data for region-specific covariates 

and regional performance testing. I developed three models (region-specific intercept, region-

specific intercept with an autocovariate, and region-specific intercept with a region-specific 

autocovariate) and compared their discrimination and calibration performance using spatial-

block cross validation. I also divided the testing sets into their respective physiographic 

provinces and tested regional model performance across the range. Modeled relationships 

included climate, stream, and land use variables. The model with both the region-specific 

intercept and region-specific autocovariate had the best discrimination and calibration 

performance, though there was a trade-off in increased bias. Taking a regional approach to 

assessment also allowed me to identify areas where the model was underperforming in order to 
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target future data collection. As with other aquatic species, I found that stream variables had the 

highest predictive power, but land use and climate variables also contributed to the model. I also 

saw a much higher intercept in the Blue Ridge physiographic province than others suggesting 

that some unexplained factor is buffering the species from declines in the region. A regional 

approach to model building and assessment was important, as it improved model performance in 

areas most in need of hellbender conservation and management.  

2.2 Introduction 

 Species distribution models (SDMs) are a class of models that relate species occurrences 

to environmental predictor variables to estimate habitat suitability. SDMs can serve as a valuable 

tool for conservation since both the data and resources needed to make critical decisions are 

often limited (Leung & Steele, 2013). In the context of conservation, SDMs have been used to 

improve the sampling efficiency of rare species (Guisan et al., 2006; Williams et al., 2009), 

determine suitable sites for species reintroductions and translocations (Schadt et al., 2002; 

Hendricks et al., 2016), support resource planning and reserve selection (Ortega‐Huerta & 

Peterson, 2004; Leathwick et al., 2008; Bombi et al., 2011), and assess the impact of 

anthropogenic stressors on populations (Junker et al., 2012; Radinger et al., 2017; Dyderski et 

al., 2018). Given the uncertain nature of absences (Lobo et al, 2010), as well as the wide 

availability of occurrence data (Graham et al, 2004), presence-only SDM methods are commonly 

employed to develop habitat suitability predictions for conservation planning. In particular, the 

MAXENT program (Elith et al., 2006), which uses maximum entropy modeling to compare 

occurrence data against background points, has dominated the SDM field since its introduction 

(Renner et al., 2015). One unfortunate shortcoming of maximum entropy models is that they are 

spatially invariant and rarely account for regional differences in relationships or spatial 
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autocorrelation in the response variable (Miller, 2012). Failure to adequately account for these 

conditions may adversely affect predictor variable reliability and model performance. However, 

recent research has demonstrated the equivalence of presence-only maximum entropy modeling 

and appropriately weighted logistic (Fithian & Hastie, 2013) and Poisson (Renner et al., 2015) 

regression. The spatial complications of presence-only data are simpler to handle within the 

generalized linear modeling framework as regional random effects may be used to account for 

spatial heterogeneity in data and model residuals can be examined for signatures of spatial 

autocorrelation.    

 A regional approach to building range-wide SDMs is a compromise between building 

static models that represent all regions equally and spatially partitioning data into separate 

regional models. Global models can mask true species-environment relationships by averaging 

their effects over the entire range of the species (Osborne et al., 2007). Spatially partitioning data 

allows intercepts and species-environment relationships to vary across the range of data and 

often improves regional performance (El‐Gabbas & Dormann, 2018; Osborne, 2002), but limits 

sample size and power to predict and extrapolate underlying relationships. Since species of 

conservation concern are often rare and data limited, building separate region-wide models can 

often be impractical. Moreover, if sample sizes are unequal across regions, resulting models may 

perform worse in low abundance and data-deficient regions that most need conservation 

guidance. Models that allow intercepts (Hamil et al., 2016) and slopes (Osborne et al., 2007; 

Miller et. al 2011) to vary across regions, may help account for spatial heterogeneity across the 

species range and improve model performance. Furthermore, taking a regional approach to 

model validation allows a more nuanced view of model performance. More than half of recent 

SDMs have relied on a single global metric to assess model performance, which can easily lead 
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to overconfidence in results (Fourcade et al., 2018). Assessing performance regionally provides a 

means to understand spatial variability in model results. Even within a model that accounts for 

regional differences, performance may be negatively affected by spatial autocorrelation.   

 Spatial autocorrelation in species occurrence data is common and can be problematic for 

model development (Legendre, 1993). Spatially invariant SDMs rely on the assumption that 

proper model specification will remove residual autocorrelation but rarely test this assumption 

(Miller, 2012). Even within a properly specified model, spatial autocorrelation may occur in the 

residuals if occurrences are clustered in space due to biological processes or unequal sampling 

effort (Segurado et al., 2006; Dormann et al., 2007). Regardless of its source, inherent 

autocorrelation leads to inflated coefficient estimates (Bini et al., 2009) and may even invert the 

slope of predicted relationships (Kühn, 2007). Filtering data to remove highly autocorrelated 

records has been suggested (Boria et al., 2014); but, like spatial partitioning of data, is 

impractical when species are rare and data is limited. Using predictors to model sampling bias in 

data may likewise remove some autocorrelation in model residuals (El‐Gabbas & Dormann, 

2017); however, the method requires previous explicit knowledge and measurement of the 

factors driving sampling bias. Modeling autocorrelation directly by including an autocovariate 

within the model is a more straightforward approach to accounting for spatial autocorrelation 

(Dormann, 2007). Allowing the slope of the autocovariate to vary by region accounts for 

differences in the strength of autocorrelation across the range. Herein, I used a mixed modeling 

framework to account for regional differences and spatial autocorrelation in an SDM for an 

imperiled, aquatic salamander species (Cryptobranchus alleganiensis) with a clustered 

distribution across the landscape. I divided the range into ecologically meaningful regions and 

developed three models: an SDM with region-specific intercepts, an SDM with region-specific 
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intercepts and a spatial autocovariate, and an SDM with region-specific intercepts and a region-

specific spatial autocovariate. I compared the global and regional performance of each model 

using spatial-block cross validation and several metrics to assess model discrimination and 

calibration.  

2.3 Materials and Methods 

Study species 

 Hellbenders (Cryptobranchus alleganienesis) are long-lived, aquatic salamanders that are 

threatened throughout much of their historic range (Mayasich et al., 2003). Hellbenders are 

divided into two subspecies, with eastern hellbenders (Cryptobranchus alleganienesis 

alleganienesis) ranging from southwestern New York southward to Georgia, Alabama, and 

Mississippi and westward to Missouri, while Ozark hellbenders (Cryptobranchus alleganienesis 

bishopi) are restricted to watersheds in southeastern Missouri and Northeastern Arkansas (Fig. 

2.1). Hellbenders once represented a considerable amount of biomass in occupied systems 

(Nickerson & Mays, 1973); however, populations of both subspecies have faced considerable 

declines throughout their range (Wheeler et al., 2003; Foster et al., 2009; Burgmeier et al., 

2011). These declines have been characterized by a lack of recruitment of younger age classes 

and a corresponding decrease in the body condition of remaining adults (Bothner & Gottlieb 

1991; Wheeler et al., 2003; Jachowski & Hopkins, 2018). The Ozark hellbender is currently 

protected under the Endangered Species Act, and the eastern subspecies is under consideration 

for listing by the United States Fish and Wildlife Service (Gould, 2011). Previous occupancy 

modeling has demonstrated underlying differences in hellbender occurrence rates across 

physiographic provinces (Jachowski et al., 2016) regardless of stream conditions and 

surrounding land use. Given the vulnerable status of the species, a range-wide SDM can serve to 
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target sampling locations for exploratory population searches and identify suitable habitat for 

translocations.  

Species data and geographic coverage  

 Unless otherwise noted all GIS analyses were performed in ArcMap Version 10.2.2 (Esri, 

2014) and all statistical analyses were performed in R version 3.4.3 (R Core Team, 2013). 

Hellbender locations and sampling dates were collected from researchers throughout the range of 

the species. While publicly available locational databases are often used to model species 

distributions, this approach is unreliable in the case of hellbenders, because they are easily 

mistaken for other aquatic salamanders (Mayasich et al., 2003). This type of misidentification 

error can lead to serious bias in SDM results (Lozier et al., 2009). Collecting data exclusively 

from researchers also ensured uniformity in sampling technique since hellbender research relies 

on rock lifting and snorkel surveys. Because I was interested in the current distribution of 

hellbenders, I only used location data collected after 1990. Since I received data from multiple 

sources, I cross-referenced all databases to remove any repeated sampling occasions. To help 

normalize for sampling effort I divided the number of hellbenders discovered at any given 

location by the number of sampling occasions. This average number of hellbenders per sampling 

event served as the dependent variable.  

 I was unable to obtain data on Missouri hellbenders so I excluded the state from the 

study. I used a GIS layer of USGS HUC 6 basins to delineate the range of the species by merging 

all HUC 6 polygons that contained a hellbender occurrence. Two HUC 6 units in the center of 

the range without occurrences were also included in the delineated range to maintain spatial 

continuity. Since a previous hellbender study indicated that physiological provinces may play an 

important role in the probability of hellbender occupancy (Jachowski et al., 2016), I further 

delineated the range using a USGS GIS layer of physiographic divisions. Any previously 
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selected HUC 12 subwatersheds (the smallest available hydrological unit) that fell within a 

physiographic division that contained occurrences were included in the final extent of the model, 

resulting in the inclusion of five physiographic provinces (Fig. 2.2). The majority of the 

hellbender occurrences (Fig. 2.3a), locations (Fig. 2.3b), and sampling occasions (Fig. 2.3c) were 

from rivers in the Blue Ridge province, but the number of hellbenders captured per location per 

sampling occasion was relatively consistent throughout the range (Fig. 2.3d). I selected 

background points at the midpoint of each NHDPlus version 2 FlowLine segment within the 

selected extent that did not contain a hellbender occurrence (Engler et al., 2004). Since down-

weighted Poisson regression can require a large number of background points for likelihood 

estimates to stabilize (Renner, 2015), I used all 220,519 background points to fit the final 

models.  

Predictor variables 

 I focused on three types of predictor data for my analysis including climate, stream, and 

land use variables. While climate variables are often used to model species distributions at the 

range-wide scale, they may be an inadequate descriptor of niche space (Fourcade et al., 2018). I 

also focused on stream variables since hellbenders are fully aquatic and likely influenced by the 

stream environment. I incorporated land use variables since previous studies have found 

associations between riparian land use and hellbender occurrence (Quinn et al., 2013; Jachowski 

et al., 2016; Pugh et al., 2016). I used the standard 19 bioclimatic variables derived from 

WorldClim version 1.4 to explain climatic variation across the range of the species (Table S2.1). 

Stream variation was described using attributes associated with the NHDPlus version 2 FlowLine 

features including stream level, stream order, upstream length, catchment area, upstream 

catchment area, maximum elevation, minimum elevation and slope (for a full description of the 

variables see Table S2.2). I used the National Land Cover Database 2011 raster layer to define 
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eight distinct land cover classes (Table S2.3). Since multicollinearity in predictors can be 

problematic for SDMs (Graham, 2003), I performed principal components analysis to reduce the 

correlation and dimensionality of each set of predictor variables. To perform the analysis for 

climate and stream variables, I projected 100,000 random points across the hellbender range 

(Fig.2.1). After joining them to the closest NHD flowline feature, I extracted stream and climate 

variables for each point. Land cover rasters were converted to polygons and clipped to HUC 12 

subwatersheds. The proportion of each land cover class was calculated for each subwatershed. I 

performed each PCA with the princomp function using the variable correlation matrix. 

 The first five PCA axes explained approximately 95% of the variation in the climate data 

and were retained as independent variables (Table S2.4). I interpreted the climate principal 

component axes as measures of regional temperature and precipitation patterns (generally getting 

colder and dryer moving from the southeast to the northwest of the range), summer temperature 

and precipitation patterns, temperature seasonality, precipitation seasonality, and temperature 

range (Table S2.4). The first five stream PCA axes also explained approximately 95% of the 

variation in the stream data and were retained as independent variables (Table S2.5) I interpreted 

the stream principal component axes as measures of elevation, stream position (upstream vs. 

downstream), stream level, stream size, and slope (Table S2.5). The first two land cover PCA 

axes explained approximately 98% of the variation in the land cover data and were retained as 

independent variable (Table S2.6). The first PCA represents a contrast between agricultural land 

use and forest cover while the second represents the amount of developed land use (Table S2.6). 

All retained PCA axes were projected across the entire range of the species and extracted to 

background and occurrence points (S2.1, S2.2, S2.3). All PCA axes showed low correlations 

with each other and were retained for model development after being centered and scaled.  
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Model development  

 I used the down weighted Poisson regression technique presented in Renner et al. (2015) 

to fit all models. The weight of background points in each physiographic province was calculated 

as the area of the province divided by the number of background points within the province 

(Table S2.7). Since physiographic province has been demonstrated to affect baseline levels of 

hellbender occurrence (Jachowski et al., 2016), it was included as a random affect in all models. 

I first fit the region-specific model with all variables and examined the Pearson’s residuals 

visually using a semivariogram (Dale & Fortin, 2014) and then confirmed the presence of spatial 

autocorrelation using a Moran’s I test. To account for this variation, I added an autocovariate to 

the model. Since the traditional inverse-weighted distance technique of autocovariate calculation 

can lead to overcorrection (Dormann, 2007; Dormann et al., 2007), I used a local autocovariate. I 

examined the range of autocorrelation and found that it corresponded roughly with the area of 

the average HUC 12 subwatershed, so I included the number of other hellbender locations within 

a HUC 12 watershed as an autocovariate. I also extended the model to estimate a separate 

autocovariate slope for each physiographic province to see if it could further improve global and 

regional model performance.   

 I used the glmnet package (Friedman, 2010) to develop Lasso regularized models for 

variable selection. For each of the final three models, I used 5-fold cross validation and 

minimum BIC score to choose an optimal lambda value (degree of regularization) and ran the 

Lasso model with the optimized lambda. I retained any variables that did not shrink to zero. 

Lasso models were fit using an equal number of presence locations and random background 

points. Final models were fit using glmer function in the lme4 package (Bates et al., 2014), 

variables retained from the Lasso model, and all background points. In all three final models, 
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only climate variable two (summer temperature and precipitation patterns) was dropped from the 

final model.     

Model validation 

 I validated the three final models using several measures of model performance. Since the 

data displayed spatial autocorrelation, cross-fold validation could lead to an overly optimistic 

assessment of model results (Roberts et al., 2017) so I used spatial-block validation to assess 

model performance. Spatial blocks need to be larger than the range of residual autocorrelation 

yet small enough to avoid extrapolation in environmental space (Roberts et al., 2017). Since 

watershed boundaries are hierarchically nested, and I knew autocorrelation in my model 

extended to the HUC 12 watershed level, I used HUC 8 subbasins (n=143) as spatial blocking 

units. Following the recommendation in Roberts et al., 2017, I used each spatial blocking unit as 

an individual fold. I examined global model performance as well as regional model performance, 

which I averaged across all regions for comparison (individual regional results are available in 

table S2.8). The coastal plain province was not included in any regional analyses since it only 

contained three hellbender occurrences. After transforming model outputs into relative 

probabilities, I calculated area under the receiver operating characteristic curve as well as area 

under the precision-recall curve since it can be a more informative metric in imbalanced data sets 

(Saito & Rehmsmeier, 2015) using the PRROC package (Grau et al., 2015). I also developed 

calibration plots and recorded the slope and R-squared values (which are indicative of model fit; 

Steyerberg et al., 2010) and the intercept (which is indicative of bias). In addition, I used 

package ape to calculate the Moran’s I statistic for the Pearson’s residuals of the global models.   
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2.4 Results 

 A region-specific autocovariate improved model discrimination and calibration both 

regionally and globally; however, it resulted in increased model bias. Global AUC-ROC values 

were high for all three final models (ranging from 0.93 – 0.98), but regional means improved 

with the addition of the autocovariate (increasing 0.86 ± 0.056 to 0.93 ± 0.017) and again with 

addition of the region-specific autocovariate (0.97 ± 0.011; Fig. 2.4a). The pattern was similar in 

AUC-PR tests with values improving with the addition of the autocovariate (from 0.33 to 0.64 

globally and from 0.16 ± 0.09 to 0.38 ± 0.12 regionally) and improving further with the addition 

of the region-specific autocovariate (0.69 globally and 0.56 ± 0.17 regionally Fig. 2.4b). 

Calibration slopes (Fig. 2.4c) and r-squared values (Fig. 2.4d) improved extensively with the 

addition of the autocovariate, but showed little additional improvement due to the addition of the 

region-specific autocovariate. The tradeoff for improved discrimination and calibration was 

increased negative bias. The calibration intercept dropped below zero both globally and 

regionally with the addition of the autocovariate, but it recovered slightly in the region-specific 

autocovariate model (Fig. 2.4e). All global and regional calibration slopes were lower than one 

(with a global mean of 0.71 ± 0.16 and a regional mean of 0.65 ± 0.10), suggesting under 

prediction in my models. The Moran’s I value was high in the spatially invariant and 

autocovariate model (0.29 ±  0.01 and 0.27  ±  0.01 respectively), but was reduced by nearly half 

with the addition of nonstationarity (0.15  ±.0.01).  

 Unsurprisingly, the highest probabilities of the fitted model occur in the Blue Ridge 

province (Fig. 2.5). More disconcerting is the stark contrast of the adjacent Valley and Ridge 

province. This, along with the overall low discriminatory power within the Valley and Ridge 

province in all final models (with a mean AUC-ROC of 0.82 ± 0.07 and a mean AUC-PR of 0.10 

± 0.06; Table S1.8), suggest that there is insufficient data to adequately predict occurrences in 
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this region. In the random effect terms, intercepts were similarly low for all physiographic 

provinces (ranging from -8.76 to -6.3) except for the Blue Ridge province (ranging from -4.3 to -

1.9) where it was approximately half as low as the other regions (Fig. 2.6). The slope of the 

autocovariate was lowest in the Blue Ridge (0.232) and Valley and Ridge (0.45) provinces, 

intermediate in the Coastal Plains (2.67) and Appalachian Plateaus (2.91), and highest in the 

Interior Low Plateaus (5.9; Fig. 2.6).    

 Fixed coefficient values largely agreed in the three final hellbender SDMs (Fig. 2.7). 

There was little consistent effect of regional climate patterns (climate variable one; 0.03 ± 0.22) 

and summer climate patterns were dropped from the final model. However, climate variation was 

more important with axes of temperature variability (climate variable three; 0.19 ± 0.11), 

precipitation variability (climate variable four; ± 0.13 ± 0.07), and temperature range (climate 

variable five; 0.22 ± 0.06) showing consistent patterns with hellbender occurrences. Stream 

variables had a stronger relationship with hellbender occurrences than climate variables (Fig. 

2.6). Stream variable two had the strongest effect (5.14 ± 0.67) in every final model with a 

positive response to reduced upstream area. Stream variable three was also very influential (2.66 

± 0.28) and demonstrated a positive response to lower stream levels. I saw smaller positive 

responses to higher elevations (1.88 ± 0.60; stream variable 1), reduced catchment area (1.00 ± 

0.11; stream variable four), and shallower slopes (1.01 ± 0.23; stream variable five). Land use 

effects were relatively small, but consistent, with higher levels of agriculture causing a negative 

response (-0.72 ±, 0.18) and lower levels of development causing a positive response (0.60 ±, 

0.22).  
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2.5 Discussion 

 Accounting for inherent autocorrelation using a region-specific autocovariate improved 

model discrimination both globally and regionally, though it was associated with an increase in 

negative bias. While several studies have demonstrated improved model performance by 

accounting for spatial autocorrelation (Tognelli & Kelt, 2004; Bahn et al., 2006) this is the first 

to demonstrate additional improvement by accounting for nonstationary in the autocovariate. 

Importantly, I did not see a decrease in residual autocorrelation until the region-specific slope 

was added to the model, making it a more effective method for accounting for autocorrelation 

than the use of an autocovariate alone. Results will likely vary depending on the nature, strength, 

and spatial variability of autocorrelation in a particular data set. Since the slopes of the 

autocovariate were highest in regions with low abundances and heavy sampling, I suspect that 

the autocorrelation in hellbender occurrences was related to sampling bias. As such, this method 

may represent a way to account for differential levels of sampling without resorting to spatial 

filtering (Boria et al., 2014) or having to measure bias covariates (El‐Gabbas & Dormann, 2017). 

While I used varying slopes strictly to account for regional-differences in the autocovariate, this 

approach could also be used to account for shifting species-environment relationships throughout 

the sampling range, which may also help improve model performance (Osborne et al., 2007). 

Unlike geographically weighted regression (Miller, 2012), predictions may be extrapolated 

outside of the modeling extent by predicting with the mean slope value.   

 The regional approach to modeling range-wide hellbender distribution data allowed me to 

account for baseline differences in occurrences across physiographic provinces. As with 

Jachowski et al. (2016), I found a much higher baseline level of hellbender occurrence in the 

Blue Ridge province compared to all other physiographic provinces. The Blue Ridge is the only 

province in the hellbender range that contains primarily metamorphic instead of sedimentary 
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bedrock. This underlying divergence may drive differences in water quality or habitat 

availability. The availability of shelter and nest rocks appears to limit hellbender densities 

(Nickerson & Mays, 1973) and geological variables were the most important predictors in a 

hellbender SDM of the Northeastern portion of the range (Quinn et al., 2013). Alternatively, land 

use legacy effects can be stronger predictors of stream impairment than current land use practices 

(Maloney et al., 2008; Surasinghe & Baldwin, 2014), and the Blue Ridge province was 

historically underutilized for agriculture compared to surrounding provinces (Price et al., 2006). 

The mixed modeling approach proved to be an effective way to account for the unexplained 

heterogeneity associated with physiographic province, regardless of it source.  

 This approach also emphasized the need to test SDMs regionally, as well as globally, as 

improvements in global discrimination were moderate compared to improvements in regional 

discrimination. Furthermore, by utilizing multiple metrics for validation I was  able to gain a 

deeper understanding of model performance than if I  had relied on the AUC-ROC metric alone 

since it featured a relatively small change in overall performance between models. The ROC-PR 

curve offered greater insights in discrimination ability since, as with most SDMs, I was working 

with an unbalanced data set (Saito & Rehmsmeier, 2015). The regional assessment approach also 

diagnosed poor performance in the Valley and Ridge province, which will allow me to focus on 

further data collection for the region prior to the next round of model development 

 Climate variables showed the lowest amount of consistent predictive power in my 

models, with stream variables showing the highest amount, and land use variables showing an 

intermediate amount. While climate variables had lower coefficient values than stream variables 

in these models, it is important not to underestimate their importance. The relatively low 

explanatory power of climate variables in the models was likely influenced by the choice of 
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sampling extent. I used a limited extent to draw background points since I was interested in 

modeling the realized distribution of the species. Had I modeled the potential distribution of the 

species, I would have widened the selection window which often leads to increased influence of 

climate variables as predictors (Guisan & Thuiller, 2005). The climate variables that were 

consistently reliable predictors across the range of the species are important since temperature 

variability (Jones, 2007), precipitation variability (Pendergrass et al., 2017), and temperature 

range (Jones, 2007) are all expected to increase under climate change. These changes could 

further reduce the available habitat for an already imperiled species.      

 The strong predictive power of upstream area is common in lotic species, acting as the 

strongest predictor in over half of modeled European stream fish distributions (Buisson et al., 

2008; Logez et al., 2012). Its strong influence makes sense as stream habitat changes 

dramatically and consistently along an upstream to downstream gradient (Vannote et al., 1980). 

Downstream portions of streams tend to be warmer and deeper (Allan & Castillo, 2007). 

Hellbenders have long been noted for their reliance on cool, shallow habitats (Nickerson & 

Mays, 1973). Sedimentation also tends to increase downstream (Allan & Castillo, 2007) and high 

sediment loads have been shown to decrease occurrence probabilities of hellbenders in multiple 

regional studies (Keitzer et al., 2013; Quinn et al., 2013; Pugh et al., 2016). Likewise, the 

positive response to elevation, reduced stream order, and catchment size reflects the needs of a 

habitat specialist. Hellbenders only occurred in headwaters and midreaches, supporting decades 

of observational reports.  

 The predictive power of the other two stream variables is more difficult to understand. 

While ostensibly the inverse of stream order, stream level it is not a straightforward measure of 

stream size. A stream level of one will apply to both the Mississippi River and every small 
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stream that empties into the Atlantic Ocean. Stream PCA 2 followed a southwest to northeast 

gradient (Fig S2.2c) and likely helped explain the strong distributional gradient of hellbender 

density that ran in a similar direction. The negative response to slope seems counterintuitive, but 

hellbenders were never found in stream segments with very steep slopes. Furthermore, pool-riffle 

channels, a habitat complex nearly ubiquitous at hellbender sites (Burgmeier et al., 2011; 

Bodinof et al., 2012), tend to occur in low to medium gradient systems (Allan & Castillo, 2007). 

It is also important to note that SDMs are models of where organisms have been reported 

(Renner et al., 2015). The predictive power of upstream area and slope may be partially driven 

by the difficulty of sampling in deep streams and streams with steep slopes. In this context, this 

is an acceptable bias since the purpose of my model is to guide sampling and conservation 

efforts.    

 The negative effect of agricultural and developed land use on hellbenders is not 

unexpected, as several previous studies have found associations between hellbender occupancy 

and land use (Quinn et al., 2013; Jachowski et al., 2016; Pugh et al., 2016). Agricultural land use 

can impact streams through inputs of sediment and non-point source pollution (Allan, 2004; 

Dudgeon et al., 2006). Impervious surfaces, which are associated with developed land use, cause 

decreased infiltration and increased runoff in watersheds (Paul & Meyer, 2001). In associated 

streams, natural hydrologic variability is altered leading to increased flood magnitude and 

frequency, lowered base flow, and heightened erosion (Allan, 2004). However, the similar effect 

sizes of both land use variables suggests that the important factor may not be the type of land 

use, but the removal of forested areas within the catchment. Recent studies have found strong 

links between catchment level riparian removal, increased conductivity, and reduced hellbender 

occupancy (Keitzer et al., 2013; Pitt et al., 2017) and recruitment (Jachowski & Hopkins, 2018). 
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Regardless of the mechanism, this result stresses the importance of maintaining riparian forest 

cover for hellbender conservation.  

  The regional approach to modeling range-wide species distribution data presented herein 

helped account for sampling bias in occurrences and improved model performance in areas most 

in need of hellbender conservation. The extension of presence-only models into a mixed 

modeling framework represents a flexible approach to address unexplained environmental 

heterogeneity and nonstationarity in modeled relationships. This study demonstrates the relative 

ease of accounting for spatial complications when presence-only models are fit using generalized 

linear models instead of machine learning techniques.      
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2.7 Figures 

 

 

Figure 2-1. The range of the eastern (Cryptobranchus alleganiensis alleganiensis) and Ozark 

(Cryptobranchus alleganiensis bishopi) hellbender subspecies.  
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Figure 2-2. The division of physiographic provinces across the modeled extent of the eastern 

hellbender (Cryptobranchus alleganiensis alleganiensis) range.    
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Figure 2-3. Summaries of the modeled data by physiographic province across the study range, 

including the number of captured Cryptobranchus alleganiensis (a), number of sampling 

locations (b), number of sampling occasions (c), and the mean number of hellbenders captured 

per sampling occasion (d). 
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Figure 2-4. Metrics of model performance including area under the ROC curve (a), area under 

the PR curve (b), calibration plot slope (c), calibration plot R-squared (d), and calibration plot 

intercept (e) for the global dataset and averaged across all regions for three final Cryptobranchus 

alleganiensis species distribution models. 
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Figure 2-5. Final SDM model relative occurrence probabilities stretched using quantile 

classification with 20 classes. 
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Figure 2-6. Summaries of the random effects in three final Cryptobranchus alleganiensis species 

distribution models including one with a region-specific intercept (M1), one with a region-

specific intercept and an autocovariate (M2), and one with a region-specific intercept and a 

region-specific autocovariate (M3).  

.  
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Figure 2-7. Summaries of the fixed effects in three final Cryptobranchus alleganiensis species 

distribution models including one with a region-specific intercept (M1), one with a region-

specific intercept and an autocovariate (M2), and one with a region-specific intercept and a 

region-specific autocovariate (M3). 
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APPENDIX 1. CHAPTER 1 SUPPLEMENTAL MATERIAL 

Table S1.1. Variables used to derive principal component axes describing stream variation across 

the hellbender range. All listed variables are attributes of NHDFlowline features (stream 

segments) in the NHDPlus Version 2 dataset.  

 

Variable Description 

Stream Level Reverse of stream order. Lower values represent mainstem flow 

lines and higher values represent tributaries.  

Stream Order Modified Strahler stream order. Headwaters receive a value of 1 

and all major stream divergences add 1 to the previous value.  

Upstream Length The length (km) of all upstream portions from the downstream end 

of the flow line.  

Catchment Area The catchment area (km2) of the flow line. 

Upstream Catchment Area The cumulative drainage area (km2) at the downstream end of the 

flow line. 

Maximum Elevation Maximum smoothed elevation (cm) within the flow line.  

Minimum Elevation Minimum smoothed elevation (cm) within the flow line.  

Slope Slope of flow line (m/m) based on smoothed elevations 
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Table S1.2. Variables used to derive principal component axes describing climatic variation 

across the hellbender range. Bioclimatic variables were derived from WorldClim version 1.4.  

 

Variable Description 

Annual Temperature Annual mean temperature (°C). Derived from 

minimum temperature (°C) and maximum 

temperature  (°C) 

Mean Diurnal Range Mean (24-hour period max-min) (°C). Derived 

from minimum temperature  (°C) and maximum 

temperature (°C) 

Isothermality Mean Diurnal Range – Temperature Annual 

Range. Derived from minimum 

temperature  (°C) and maximum 

temperature  (°C) 

Temperature Seasonality  

 

Coefficient of variability of annual mean 

temperature. Derived from minimum 

temperature (°C) and maximum 

temperature  (°C)  

Maximum Temperature Warmest Month Derived from maximum temperature (°C). 

Minimum Temperature Coldest Month Derived from minimum temperature (°C). 

Temperature Annual Range Maximum Temperature of Warmest Month – 

Minimum Temperature of Coldest Month 

Mean Temperature Wettest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 

Mean Temperature Driest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 

Mean Temperature Warmest Quarter Derived from minimum temperature  (°C) and 

maximum temperature (°C) 

Mean Temperature Coldest Quarter Derived from minimum temperature  (°C) and 

maximum temperature (°C) 

Annual Precipitation  Derived from rainfall (mm/month) 

Precipitation Wettest Month  Derived from rainfall (mm/month) 

Precipitation Driest Month Derived from rainfall (mm/month) 

Precipitation Seasonality Coefficient of variability of Annual Precipitation 

Precipitation Wettest Quarter Derived from rainfall (mm/month) 

Precipitation Driest Quarter Derived from rainfall (mm/month) 

Precipitation Warmest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 

Precipitation Coldest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 
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Table S1.3. Explained variance and variable loadings on the first five principal component axes 

describing stream variation across the hellbender range. Bold values represent high loadings that 

were used to interpret the axes.  

 

 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 

Variance Explained 0.363 0.250 0.138 0.111 0.082 

Stream Level 0.297  -0.533 -0.432 0.558 

Stream Order -0.368 -0.207 0.312 0.389 0.405 

Upstream Length -0.344 -0.530 -0.243 -0.156  

Catchment Area -0.138  0.605 -0.774  

Upstream Catchment Area -0.342 -0.530 -0.246 -0.16  

Maximum Elevation 0.451 -0.402 0.238  0.107 

Minimum Elevation 0.413 -0.386 0.267 0.108 0.339 

Slope 0.385 -0.288   -0.627 
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Table S1.4. Explained variance and variable loadings on the first five principal component axes 

describing climate variation across the hellbender range. Bold values represent high loadings that 

were used to interpret the axes.  

 

  

 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 

Variance Explained  0.582 0.214 0.074 0.050 0.031 

Annual Temperature -0.226 0.317  0.121  

Mean Diurnal Range -0.167 0.193 0.397 -0.516 0.115 

Isothermality -0.245  0.381 -0.318 -0.191 

Temperature Seasonality 0.252 0.159 -0.260 0.101 0.364 

Maximum Temperature Warmest Month -0.138 0.433   0.167 

Minimum Temperature Coldest Month -0.261 0.199  0.205 -0.181 

Temperature Annual Range 0.198 0.283 -0.112 -0.207 0.485 

Mean Temperature Wettest Quarter 0.149  0.578 0.139 0.416 

Mean Temperature Driest Quarter -0.254 0.141  0.241  

Mean Temperature Warmest Quarter -0.167 0.398  0.171 0.118 

Mean Temperature of Coldest Quarter -0.262 0.223 0.106  -0.106 

Annual Precipitation  -0.28 -0.109 -0.182  0.168 

Precipitation Wettest Month -0.268  -0.231 -0.282  

Precipitaiton Driest Month -0.253 -0.232  0.119 0.122 

Precipitation Seasonality  0.139 0.274 -0.283 -0.483 -0.177 

Precipitation Wettest Quarter -0.272  -0.264 -0.175 0.150 

Precipitation Driest Quarter -0.270 -0.180   0.238 

Precipitation Warmest Quarter -0.162 -0.344  -0.181 0.403 

Precipitation Coldest Quarter -0.287  -0.146   
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Table S1.5. The number of loci associated with each environmental axis averaged over all tested 

values of K (11-15). Environmental associations were tested on major alleles using latent factor 

mixed model analysis.   

 

Environmental Axis Average # of 

Associated Loci 

Standard 

Error 

Stream 1 – Elevation 0 0 

Stream 2 – Upstream Area 2.4 0.24 

Stream 3 – Stream Size 5.6 1.63 

Stream 4 – Catchment Area  4 1.79 

Stream 5 – Stream Level and Gradient  0 0 

Climate 1 – Temperature and Precipitation 0.2 0.2 

Climate 2 – Summer Temperature and Precipitation  0 0 

Climate 3 – Temperature Seasonality 2.8 0.28 

Climate 4 – Precipitation Seasonality 0 0 

Climate 5 - Temperature Range 3.4 0.24 
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Table S1.6. Global climate models ensembled for future climate projections. These are the most 

current projections used in the Fifth Assessment IPCC report downscaled to 30 second resolution 

and calibrated using WorldClim 1.4 current climate data as a baseline. I used projections for 

2050 based on the representative concentration pathway 4.5 in which greenhouse gas emissions 

peak at 2040 and then decline.    

 

Model Source 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory  

GISS-E2-R NASA Goddard Institute for Space Studies 

INMCM4 Institute for Numerical Mathematics 

IPSL-CM5A-LR Institut Pierre-Simon Laplace 

NorESM1-M Norwegian Climate Centre 
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Table S1.7. Coefficient estimates for isolation by distance and isolation by environment 

relationships in hellbenders across models accounting for increasingly greater amounts of genetic 

structure. 

 

 No 

Structure  

Population 

Intercept 

Subpopulation 

Intercept 

Population  

Slope 

Subpopulation 

Slope 

Intercept  0.34444 0.37090 0.37980 0.34510 0.35600 

Distance 0.08955 0.05661 0.05705 0.07975 0.07081 

Elevation -0.00321 -0.00093 -0.00169 -0.00091 -0.00057 

Stream position 0.00852 0.00126 0.00093 0.00210 0.00205 

Stream level  -0.00101 0.00317 0.00270 0.00197 0.00211 

Stream size  0.00171 -0.00079 -0.00181 -0.00081 -0.00214 

Slope 0.00317 0.00071 -0.00049 0.00012 -0.00051 

Regional climate 0.00348 -0.00240 -0.00215 0.00019 0.00052 

Summer climate -0.01017 0.00309 0.00466 0.00041 0.00090 

Temperature seasonality 0.00669 0.00060 0.00089 -0.00121 -0.00153 

Precipitation seasonality -0.00049 0.00295 0.00196 0.00204 0.00149 

Temperature range -0.00138 -0.00119 -0.00254 -0.00234 -0.00271 
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Figure S1.1. A visual representation of variation in the top five stream PCAs across the range of 

the hellbender. All color values are stretched using quantile classification with 100 classes. 

Stream PCA 1 (A) is associated with elevation with higher values representing higher elevations. 

Stream PCA 2 (B) is associated with upstream catchment area and upstream stream length. 

Higher values occur in stream segments with less upstream area. Stream PCA 3 (C) is associated 

with stream level and catchment area. Higher values occur in stream segments with smaller 

stream levels and larger catchment areas. Stream PCA 4 (D) is associated with catchment area 

with higher values representing stream segments with smaller catchment areas. Stream PCA 5 

(E) is associated with stream level and slope. Higher values occur in stream segments with 

greater stream levels and flatter slopes.    
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Figure S1.2. A visual representation of variation in the top five climate PCA axes across the 

range of the hellbender. All color values are stretched using quantile classification with 100 

classes. Climate PCA 1 (A) is a general index of regional temperature and precipitation trends 

with both temperatures and precipitation decreasing in the higher value cells. Climate PCA 2 (B) 

is an index of summer climate patterns. Cells with high values have higher temperatures during 

the warmest periods of the year and lower precipitation during the warmest quarter. Climate 

PCA 3 (C) is an index of temperature variability. Cells with high values have higher daily 

temperature shifts, higher values of isothermality, and lower values of temperature seasonality. 

Cells with higher values also have higher mean temperatures during the wettest quarter. Climate 

PCA 4 (D) is an index of precipitation variability. Cells with higher values have lower values of 

precipitation seasonality and lower daily temperature shifts. Climate PCA 5 (E) is an index of 

temperature range. Cells with higher values have larger annual temperature ranges, greater 

temperature seasonality, higher mean temperatures in the wettest quarter, and higher 

precipitation in the warmest quarter.             
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Figure S1.3. The cross-entropy value across five runs estimating ancestry coefficients at each 

value of K (1-30). The optimal value of K occurs when the cross-entropy is minimized. In the 

dataset, cross-entropy plateaus at K values of 11-15. 
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APPENDIX 2. CHAPTER 2 SUPPLEMENTAL MATERIAL 

Table S2.1. Variables used to derive principal component axes describing climatic variation 

across the hellbender range. Bioclimatic variables were derived from WorldClim version 1.4. 

 

Variable Description 

Annual Temperature Annual mean temperature (°C). Derived from 

minimum temperature (°C) and maximum 

temperature  (°C) 

Mean Diurnal Range Mean (24 hour period max-min) (°C). Derived 

from minimum temperature  (°C) and maximum 

temperature (°C) 

Isothermality Mean Diurnal Range – Temperature Annual 

Range. Derived from minimum temperature  (°C) 

and maximum temperature  (°C) 

Temperature Seasonality  

 

Coefficient of variability of annual mean 

temperature. Derived from minimum 

temperature (°C) and maximum temperature  (°C)  

Maximum Temperature Warmest Month Derived from maximum temperature (°C). 

Minimum Temperature Coldest Month Derived from minimum temperature (°C). 

Temperature Annual Range Maximum Temperature of Warmest Month – 

Minimum Temperature of Coldest Month 

Mean Temperature Wettest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 

Mean Temperature Driest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 

Mean Temperature Warmest Quarter Derived from minimum temperature  (°C) and 

maximum temperature (°C) 

Mean Temperature Coldest Quarter Derived from minimum temperature  (°C) and 

maximum temperature (°C) 

Annual Precipitation  Derived from rainfall (mm/month) 

Precipitation Wettest Month  Derived from rainfall (mm/month) 

Precipitation Driest Month Derived from rainfall (mm/month) 

Precipitation Seasonality Coefficient of variability of Annual Precipitation 

Precipitation Wettest Quarter Derived from rainfall (mm/month) 

Precipitation Driest Quarter Derived from rainfall (mm/month) 

Precipitation Warmest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 

Precipitation Coldest Quarter Derived from minimum temperature (°C), 

maximum temperature  (°C), and rainfall 

(mm/month) 
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Table S2.2. Variables used to derive principal component axes describing stream variation across 

the hellbender range. All listed variables are attributes of NHDFlowline features (stream 

segments) in the NHDPlus Version 2 dataset.  

 

Variable Description 

Stream Level Reverse of stream order. Lower values represent mainstem flow 

lines and higher values represent tributaries.  

Stream Order Modified Strahler stream order. Headwaters receive a value of 1 

and all major stream divergences add 1 to the previous value.  

Upstream Length The length (km) of all upstream portions from the downstream end 

of the flow line.  

Catchment Area The catchment area (km2) of the flow line. 

Upstream Catchment Area The cumulative drainage area (km2) at the downstream end of the 

flow line. 

Maximum Elevation Maximum smoothed elevation (cm) within the flow line.  

Minimum Elevation Minimum smoothed elevation (cm) within the flow line.  

Slope Slope of flow line (m/m) based on smoothed elevations 
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Table S2.3. Variables used to derive principal component axes describing land use variation 

within HUC 12 subwatersheds across the hellbender range. Proportions of land cover classes 

were calculated for each subwatershed using categories defined for the National Land Cover 

Database 2011 (NLDC2011) and provided by the Multi-Resolution Land Characteristics 

Consortium (MRLC).  

 

Class Raster Value Description 

Water 1 Includes open water and perennial ice and snow. 

Developed 2 Includes all developed areas from open spaces to high intensity. 

Barren 3 Includes any bare ground areas with less than 15% vegetation cover   

Forest 4 Includes deciduous, evergreen, and mixed forests. 

Shrubland 5 Includes dwarf scrub, scrub, and shrub dominated areas. 

Herbaceous 7 Includes areas dominated by grasslands, sedges, lichens, and mosses. 

Agriculture 8 Includes cultivated crops, hay crops, and pastures 

Wetlands 9 Includes woody and emergent herbaceous wetlands 
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Table S2.4. Explained variance and variable loadings on the first five principal component axes 

describing climate variation across the hellbender range. Bold values represent high loadings that 

were used to interpret the axes.  

  

 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 

Variance Explained  0.582 0.214 0.074 0.050 0.031 

Annual Temperature -0.226 0.317  0.121  

Mean Diurnal Range -0.167 0.193 0.397 -0.516 0.115 

Isothermality -0.245  0.381 -0.318 -0.191 

Temperature Seasonality 0.252 0.159 -0.260 0.101 0.364 

Maximum Temperature Warmest Month -0.138 0.433   0.167 

Minimum Temperature Coldest Month -0.261 0.199  0.205 -0.181 

Temperature Annual Range 0.198 0.283 -0.112 -0.207 0.485 

Mean Temperature Wettest Quarter 0.149  0.578 0.139 0.416 

Mean Temperature Driest Quarter -0.254 0.141  0.241  

Mean Temperature Warmest Quarter -0.167 0.398  0.171 0.118 

Mean Temperature of Coldest Quarter -0.262 0.223 0.106  -0.106 

Annual Precipitation  -0.28 -0.109 -0.182  0.168 

Precipitation Wettest Month -0.268  -0.231 -0.282  

Precipitation Driest Month -0.253 -0.232  0.119 0.122 

Precipitation Seasonality  0.139 0.274 -0.283 -0.483 -0.177 

Precipitation Wettest Quarter -0.272  -0.264 -0.175 0.150 

Precipitation Driest Quarter -0.270 -0.180   0.238 

Precipitation Warmest Quarter -0.162 -0.344  -0.181 0.403 

Precipitation Coldest Quarter -0.287  -0.146   
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Table S2.5. Explained variance and variable loadings on the first five principal component axes 

describing stream variation across the hellbender range. Bold values represent high loadings that 

were used to interpret the axes.  

 

 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 

Variance Explained 0.363 0.250 0.138 0.111 0.082 

Stream Level 0.297  -0.533 -0.432 0.558 

Stream Order -0.368 -0.207 0.312 0.389 0.405 

Upstream Length -0.344 -0.530 -0.243 -0.156  

Catchment Area -0.138  0.605 -0.774  

Upstream Catchment Area -0.342 -0.530 -0.246 -0.16  

Maximum Elevation 0.451 -0.402 0.238  0.107 

Minimum Elevation 0.413 -0.386 0.267 0.108 0.339 

Slope 0.385 -0.288   -0.627 
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Table S2.6. Explained variance and variable loadings on the first two principal component axes 

describing land cover variation in HUC 12 subwatersheds across the hellbender range. Bold 

values represent high loadings that were used to interpret the axes.  

 

 PCA 1   PCA 2 

Variance Explained 0.910 0.0676 

Water  -0.127 

Developed  -0.736 

Barren   

Forest -0.730 0.434 

Shrubland   

Herbaceous   

Agricultural  0.683 0.501 

Wetlands   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 

Table S2.7. Summary of the background point model weight calculations for each physiographic 

province. 

 

Physiographic Province Area (km2) Background Points Weights 

Appalachian Plateaus 391318.3 113633 0.290 

Blue Ridge 44453.0 15448 0.348 

Coastal Plain  16131.5 6979 0.433 

Interior Low Plateaus 208265.5 56180 0.270 

Valley and Ridge 95275.2 28279 0.297 
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Table S2.8. Cross-validated model performance measures across the entire hellbender range and 

within specific physiographic provinces for the three final SDM models.    

 

Model 1- 

Spatially Invariant  

AUC-

ROC 

AUC-

PR 

Calibration  

Intercept 

Calibration 

Slope 

Calibration 

R-squared 

All Provinces 0.969 0.340 0.046 0.767 0.430 

Appalachian Plateaus(AP) 0.933 0.042 -0.019 0.406 0.679 

Blue Ridge (BR) 0.873 0.388 0.060 0.368 0.414 

Interior Low Plateaus (ILP) 0.963 0.242 -0.059 1.120 0.903 

Valley and Ridge (VR) 0.700 0.001 0.001 0.004 1.000 

Regional Mean 0.859 0.168 -0.004 0.475 0.665 

Standard Error 0.113 0.090 0.024 0.233 0.122 

Model 2- 

Autocovariate 

AUC-

ROC 

AUC-

PR 

Calibration  

Intercept 

Calibration 

Slope 

Calibration 

R-squared 

All Provinces 0.980 0.644 -0.118 0.888 0.871 

Appalachian Plateaus(AP) 0.954 0.255 -0.112 0.893 0.566 

Blue Ridge (BR) 0.938 0.741 -0.109 0.874 0.884 

Interior Low Plateaus (ILP) 0.944 0.298 -0.021 0.980 0.957 

Valley and Ridge (VR) 0.880 0.236 -0.003 0.180 1.000 

Mean 0.929 0.383 -0.061 0.732 0.802 

Standard Error 0.017 0.120 0.028 0.185 0.104 

Model 3- 

Autocovariate and 

Nonstationary  

AUC-

ROC 

AUC-

PR 

Calibration 

Intercept 

Calibration 

Slope 

Calibration 

R-squared 

All Provinces 0.999 0.698 -0.100 0.871 0.897 

Appalachian Plateaus(AP) 0.981 0.662 -0.003 0.897 0.899 

Blue Ridge (BR) 0.934 0.746 -0.110 0.881 0.882 

Interior Low Plateaus (ILP) 0.976 0.789 -0.032 0.973 0.829 

Valley and Ridge (VR) 0.891 0.046 0.001 0.166 1.000 

Mean 0.947 0.561 -0.036 0.729 0.869 

Standard Error 0.021 0.174 0.026 0.189 0.026 
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Figure S2.1. A visual representation of variation in the top five climate PCA axes across the range 

of the hellbender. All color values are stretched using quantile classification with 100 classes. 

Climate PCA 1 (a) is a general index of regional temperature and precipitation trends with both 

temperatures and precipitation decreasing in the higher value cells. Climate PCA 2 (b) is an index 

of summer climate patterns. Cells with high values have higher temperatures during the warmest 

periods of the year and lower precipitation during the warmest quarter. Climate PCA 3 (c) is an 

index of temperature variability. Cells with high values have higher daily temperature shifts, higher 

values of isothermality, and lower values of temperature seasonality. Cells with higher values also 

have higher mean temperatures during the wettest quarter. Climate PCA 4 (d) is an index of 

precipitation variability. Cells with higher values have lower values of precipitation seasonality 

and lower daily temperature shifts. Climate PCA 5 (e) is an index of temperature range. Cells with 

higher values have larger annual temperature ranges, greater temperature seasonality, higher mean 

temperatures in the wettest quarter, and higher precipitation in the warmest quarter.             
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Figure S2.2. A visual representation of variation in the top five stream PCAs across the range of 

the hellbender. All color values are stretched using quantile classification with 100 classes. Stream 

PCA 1 (a) is associated with elevation with higher values representing higher elevations. Stream 

PCA 2 (b) is associated with upstream catchment area and upstream stream length. Higher values 

occur in stream segments with less upstream area. Stream PCA 3 (c) is associated with stream 

level and catchment area. Higher values occur in stream segments with smaller stream levels and 

larger catchment areas. Stream PCA 4 (d) is associated with catchment area with higher values 

representing stream segments with smaller catchment areas. Stream PCA 5 (e) is associated with 

stream level and slope. Higher values occur in stream segments with greater stream levels and 

flatter slopes.    
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Figure S2.3. A visual representation of the variation in the top two land use PCA axes across the 

range of the hellbender. All color values are stretched using quantile classification with 10 classes. 

Land use PCA 1 (a) is a contrast between agricultural land use and forest cover. Land use PCA 2 

(b) is a measure of development with negative values in more developed areas and positive values 

in areas with more agriculture or forested area.  
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