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A growing understanding of the often subtle unintended

impacts of neonicotinoid seed treatments on both non-target

organisms and their environment have led to concerns about

the suitability of current pest management approaches in large

scale agriculture. Several neonicotinoid compounds are used

in seed treatments of the most widely grown grain and oilseed

crops worldwide. Most applications are made prophylactically

and without prior knowledge of pest populations. A growing

body of evidence suggests that these compounds become

contaminants of soil, water, and plant products, including

pollen and nectar. These unforeseen routes of exposure are

documented to have negative impacts on honey bee health

and also have potential to exert effects on a broader

environmental scale.
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Seed treatments as crop protectants in
agriculture
Concerns regarding the unintended consequences of

pesticide use have recently received increased attention

from researchers and regulatory bodies alike, particularly

in the case of the neonicotinoid class of insecticides and

their impacts on insect pollinators and ecosystems

[1,2��,3,4��]. In the case of many of the principal agro-

nomic crops grown worldwide (including maize, soy-

beans, wheat, canola, as well as cotton), neonicotinoids

are routinely applied to seeds to guard against early

season insect pests. In North America alone, these crops

represent approximately 115 million hectares of produc-

tion annually (94.5 million hectares in the United States

and 21.5 million in Canada) [5,6]. Notably, this rapid

adoption has occurred in the absence of any documented

increase in pest threat [7]. The use of neonicotinoids as
Please cite this article in press as: Krupke CH, Long EY: IntersectionsQ1 between neonicotin
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seed treatments began with the registration of imidaclo-

prid in 1994, and it is now estimated that 60% of applica-

tions of neonicotinoid insecticides are delivered via soil or

seed treatments [8], often in combination with protectant

fungicides. The predominant neonicotinoids used in seed

treatment formulations for grain and oilseed crops are

thiamethoxam, its metabolite clothianidin, and imidaclo-

prid. Although these formulations can provide crop pro-

tection, particularly from aphids and other sucking insects

[9], the economic benefits associated with their use have

been difficult to quantify in the major cropping systems

where they are used, including maize [10–13] and soy-

beans [14,15]. These compounds also carry risks to bene-

ficial insects and non-target areas surrounding fields both

during and after planting. Chemical characteristics of

these compounds that are frequently cited as beneficial

for pest management include high water solubility that

facilitates systemic movement through plant tissues and

high persistence in soils. However, these same character-

istics can enhance the potential for neonicotinoid active

ingredients used in seed treatments to exert impacts on

non-target areas and organisms within and beyond both

the planted field and cropping season. In the sections

below and the attached table, we outline the principal

routes through which honey bees and other pollinators

may encounter these compounds (Table 1).

Effects on honey bees & ecosystems
Exposure to residues via plant products

A wide range of pesticides (including several neonicoti-

noids) have been detected in honey bee hive resources

including bee-collected pollen, stored pollen (or bee

bread) and wax collected from honey bee hives located

near commercial agriculture operations [16–21]. In most

cases where neonicotinoids have been documented in

honey bee or hive products, annual crops grown in the

vicinity have been implicated as the likely source. This

may be due to deposition of contaminated soil or planting

dust upon bees, plants, or both. However, many crop

plants grown from treated seeds express neonicotinoid

residues in pollen or nectar, which poses exposure risks to

honey bees via their food resources. Pollen loads from

honey bee hives placed adjacent to oilseed rape grown

from thiamethoxam or clothianidin-treated seeds in

Poland have shown mean residue concentrations of these

active ingredients in pollen to be 6.6 parts per billion

(ppb) and 0.6 ppb respectively [22]. Imidacloprid con-

centrations ranging between 1.1 and 5.7 ppb have

been detected in honey bee-collected pollen loads in

France [16,18], while thiamethoxam and clothianidin
oid seed treatments and honey bees, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/
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Table 1

Summary of published literature documenting exposure routes and concentrations of neonicotinoids found in environmental matrices

encountered by honey bee foragers. All concentrations are reported in parts per billion (ppb).

Exposure route Neonicotinoids/metabolites

detected

Time in season Conc. reported in matrices Reference

Dust Imidacloprid Mid-March to May Mean: 21 (grass)

Mean: 32 (flowers)

Greatti et al. [30]

Imidacloprid Mid-March to May 40–58 (grass)

22–123 (flowers)

Greatti et al. [33]

Clothianidin & imidacloprid Mid-March to May 29–3661 ng/bee Girolami et al. [37]

Clothianidin (soil); Clothianidin

& thiamethoxam (dandelions)

Mid-April to early May 2.1–9.6 (soil)

1.1–9.4 (dandelions)

Krupke et al. [19]

Clothianidin Mid-March to May 0–47.8 (non-crop flowers) Pistorius et al. [21]

Dew &

Guttations

Clothianidin May 1 h post planting: 17.5 and 27

24 h post planting: 6.5 and 12.5

Marzaro et al. [36]

Imidacloprid, clothiandin, &

thiamethoxam (field samples);

imidacloprid only (lab samples)

April to May Mean: 11,900–47,000 (field)

Mean: 82,800–110,000

(laboratory)

Girolami et al. [23]

Pollen Imidacloprid Mid-April to August 1.1–5.7 Chauzat et al. [18]

Imidacloprid and metabolite 6-

chloronicotinic acid

0.9–1.2 Chauzat et al. [17]

Thiacloprid, Imidacloprid,

acetamiprid, & thiamethoxam

Mean thiacloprid: 23.8 (max: 115)

Mean imidacloprid: 39.0 (max:

912)

Mean acetamiprid: 59.3 (max: 134)

Mean thiamethoxam: 53.3 (max:

53.3)

Mullin et al. [20]

Clothiandin & thiamethoxam Clothianidin: 3.9–88

Thiamethoxam: 1.2–7.4

Krupke et al. [18]

Clothiandin & thiamethoxam Mean clothianidin: 0.6

Mean thiamethoxam: 6.6

Pohorecka et al. [22]

Water Clothianidin, thiamethoxam,

imidacloprid, acetamiprid, &

dinotefuran

April to March Clothianidin: 0.0017–.257

Thiamethoxam: 0.0017–.185

Imidacloprid: 0.003–0.0427

Acetamiprid: 0–0.0111

Dinotefuran: 0–0.0027

Thiacloprid: ND

Hladik et al. [40��]

Clothianidin, thiamethoxam, &

imidacloprid

Clothianidin: 0.21–3.34

Thiamethoxam: 0.20–8.93

Imidacloprid: 0.26–3.34

Huseth and

Groves [41��]

Imidacloprid Urban settings: 2–131

Suburban settings: 1–12

Rural settings: 1–25

Johnson and

Pettis [43��]

Imidacloprid, thiamethoxam,

clothianidin, & acetamiprid

Mean spring 2012: 0.0083 (max:

0.184)

Mean summer 2012: 0.0768 (max

3.11)

Mean fall 2012: 0.004 (max: 0.101)

Mean spring 2013: 0.0527 (max:

0.212)

Main et al. [42]

Clothiandin & thiamethoxam Clothianidin: 0.1–55.7

Thiamethoxam: 0.1–63.4

Samson-Robert

et al. [44��]

C

oncentrations ranging from 1.2 to 7.4 ppb and 3.9 to

8 ppb, respectively have been detected in honey bee-

ollected pollen in Indiana, USA well after planting activi-

es ceased [19]. Maize pollen grown from seeds treated

ith thiamethoxam and clothianidin contained 1.7 and

.9 ppb respectively, and bees were shown to forage upon

is pollen in the field [19]. In a 3-year study conducted in

rance, fifty-seven percent of 185 honey bee pollen

ads exhibited imidacloprid contamination with an aver-

ge concentration of 0.9 ppb [17]. The neonicotinoids
Please cite this article in press as: Krupke CH, Long EY: IntersectionsQ1 between neonicoti

j.cois.2015.04.005
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thiacloprid, imidacloprid, and acetamiprid have been

detected in 5.4%, 2.9%, and 3.1% of 350 pollen samples

collected from North American honey bee colonies located

in various cropping systems [20], although very few of these

samples were collected from areas where neonicotinoid-

seed treated crops were grown. Although the percentages

reported in this study are low, individual detections of

neonicotinoids included maximum values of 115 ppb for

thiacloprid, 912 ppb for imidacloprid, and 134 ppb for

acetamiprid.
noid seed treatments and honey bees, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/

www.sciencedirect.com
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There is further evidence that honey bees can be intoxi-

cated by neonicotinoid residues in guttations, exuded

water droplets, produced by corn seedlings grown from

treated seed. Exposure in this case is the result of the

systemic movement of active ingredients from treated

seeds into the corn seedlings. Chemical analysis of gutta-

tions collected from field and laboratory-grown corn

plants seed treated with imidacloprid, clothianidin, or

thiamethoxam exhibit high concentrations ranging from

11,900 to 47,000 ppb in field-collected guttations and

82,800 to 110,000 ppb in lab-collected guttations [23].

Furthermore, honey bees fed the guttations from trea-

ted-corn seedlings exhibited lack of coordination, irre-

versible wing paralysis and death shortly thereafter.

Although honey bees are known to collect guttations

from winter rape [24], the extent to which honey bees

utilize water resources in the form of guttations from

other treated crop species requires further study.

The range of concentrations listed above generally fall

below acute toxicity levels (Table 2) and represent a

chronic, sub-lethal exposure route for pollinators. Effects

of ingestion of food containing sub-lethal doses of neo-

nicotinoids have recently been quantified for honey

bees and bumblebees. Although beyond the scope of

this article, effects of these sub-lethal exposures have

included impaired navigation and learning, impaired im-

munity and reduced colony growth and queen rearing

[1,25�,26–28,29��].

Residues in dust from planting treated seeds

Neonicotinoid seed treatments are currently a focus of

scrutiny for several reasons; but chronicling their unin-

tended environmental impacts was first initiated by the

deaths of large numbers of honey bees following the

planting of neonicotinoid-treated seeds in several coun-

tries, spanning the period since these products were first

widely adopted [19,21,30–32]. Initial investigations de-

termined that seed-treatment coatings can abrade and fall

away from the seed surface [21,30,33]. Investigations of
Please cite this article in press as: Krupke CH, Long EY: IntersectionsQ1 between neonicotin

j.cois.2015.04.005

Table 2

Summary of acute toxicity levels of 5 neonicotinoids to honey bees a

water. Lethal dose (LD50) values are reported in ng/bee and degradat

Neonicotinoid Honey bee (LD50) 

Oral 

Thiamethoxam [46,47] 5 

Clothianidin [48] 4 

Imidacloprid [49] 3.7 

Acetamiprid [50,51] 14,530 

Thiacloprid [52] 17,320 

Note: Adapted from [46] Syngenta Crop Protection (2005) ENVIROfacts T

Protection Directorate, review report Thiamethoxam; [48] US EPA (2003) O

Luukinen, B.; Buhl, K.; Stone, D. (2010) NPIC Imidacloprid Technical Fact S

Directorate, review report Acetamiprid; [51] US EPA (2002) Office of pes

pesticide programs, factsheet Thiacloprid.

www.sciencedirect.com 
these acute exposures suggested that some form of

‘operator error’ (i.e., below standard application of seed

treatment pesticides) was responsible for the observed

honey bee deaths during spring seed sowing [32]. How-

ever, despite improvements in pesticide formulations and

the quality of seed coat applications, additional bee die-

offs have been documented in the EU, Canada and the

US [19,21,31]. It is now clear that during the course of

normal planting operations, exhaust systems of modern

pneumatic planters deliver seed treatment active ingre-

dients into the air, where the dusts can disperse and settle

onto nearby vegetation or honey bees themselves

[21,34��,35].

Efforts to quantify neonicotinoid contamination resulting

from planter dust have documented the presence of

residues in soil, grass, and flower blossoms following

the sowing of treated seeds. Evaluations of environmental

contamination by seed treatments containing clothianidin

and thiamethoxam have found concentrations ranging

between 2.1–9.6 ppb in soil samples and 1.1–9.4 ppb in

dandelion blossoms collected from field margins [19].

Average concentrations of imidacloprid in grass and flow-

er samples of 21 ppb and 32 ppb, respectively, have been

documented [30], as well as higher concentrations ranging

between 14–29 ppb in grass samples and 22–59 ppb in

flower samples collected the day of, as well as several days

following, the sowing of neonicotinoid-treated maize [33].

Variable clothianidin residue concentrations, some ex-

ceeding 40 ppb, have also been detected in flowers col-

lected from untreated apple, dandelion, oilseed rape and

other wildflowers [21]. The contamination of dew and

guttation droplets by dispersing planter dust is another

possible exposure route for honey bees. Evaluation of

these water sources for contamination following the sow-

ing of clothianidin-treated seeds revealed active ingredi-

ent concentrations ranging between 17.5 and 27 ppb, one

hour after planting and concentrations between 6.5

and 12.5 ppb 24 h after planting [36]. Furthermore, the

addition of seed lubricants such as graphite or talc (a
oid seed treatments and honey bees, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/

nd the environmental fate of these active ingredients in soil and

ion time (DT50) values are reported in days.

Half-life (DT50)

Contact Soil Water

24 5–100 8–44

43.9 148–1155 27

59.7 40–124 30–162

8090 2.6–133 13–420

38,800 2.4–27.4 10–63

hiamethoxam; [47] European Commission (2006) Health & Consumer

ffice of pesticide programs, factsheet Clothianidin; [49] Gervais, J.A.;

heet; [50] European Commission (2004) Health & Consumer Protection

ticide programs, factsheet Acetamiprid; [52] US EPA (2003) Office of
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C

commended practice for planting with most pneumatic

lanters) can exacerbate the abrasion of seed coatings in

e planter, such that lubricants also become contaminat-

d with active ingredients and further contribute to

nvironmental contamination when expelled with ex-

aust air [19].

irect contact with neonicotinoid-contaminated dust

louds has been shown to occur for honey bees foraging

 and around fields during planting activities, and in fact

dividual foragers exposed to dust clouds during flight

bsequently suffer mortality within hours, particularly in

ases of high humidity [35–37]. Chemical analysis of bees

llowing their exposure to planter-emitted dusts dem-

nstrate that foragers may acquire 29–3661 ng/bee of

idacloprid and 118–674 ng/bee of clothianidin [37];

ell in excess of concentrations sufficient to cause acute

toxication for honey bees (Table 2). Furthermore, the

haracteristic pubescence of honey bees causes them to

ecome electrostatically charged during flight as a result

f friction with air; this is generally an adaptive trait that

creases the attraction of small particles like pollen to the

ody surface as bees visit flowers [38]. In conditions

here insecticide-laden dusts are found, however, this

me mechanism may render bees more likely to accu-

ulate residues as they fly near areas where planter dust

 present.

xposure to residues via contaminated water

everal recent publications have documented contami-

ation of water sources with neonicotinoids used in seed

eatments [39��]. Sampling of surface waters in the US

as revealed frequent contamination of stream waters

ith clothianidin, thiamethoxam, and imidacloprid. Of

9 water samples collected across 9 sites of high maize

nd soybean production in the US, 75% were contami-

ated with clothianidin, 47% with thiamethoxam, and

3% with imidacloprid [40��]. Furthermore, documented

oncentration fluctuations corresponded with planting of

eonicotinoid-treated maize seed and subsequent rain-

ll. These findings implicate neonicotinoid-seed treat-

ents as likely sources of contamination and also reflect

e very high water solubility of these compounds [8].

imilarly, thiamethoxam was detected in groundwater

mples collected from intensively-managed agricultural

gions in Wisconsin, USA from 2008 to 2012 [41��]. In

is case, leaching of thiamethoxam applied during po-

to planting was implicated as a key contributor to

roundwater contamination in and around crop produc-

on areas, both in-season and beyond. Neonicotinoids

ere also frequently detected in water samples collected

 a repeated sampling of 136 Canadian wetlands span-

ing the provinces of Alberta, Saskatchewan, and Man-

oba with 36% of wetlands showing evidence of

ontamination with at least one neonicotinoid before

ed sowing and 62% of wetlands exhibiting contamina-

on following seed sowing [42]. Furthermore, the same
Please cite this article in press as: Krupke CH, Long EY: IntersectionsQ1 between neonicoti

j.cois.2015.04.005
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study found that the percentage  of wetlands contaminat-

ed with neonicotinoids increased to 91% before seeding

in the following year, suggesting that movement of

residues from seed-treated fields to wetland areas occurs

via run-off from melting snow. Finally, imidacloprid

concentrations evaluated in water samples potentially

used by bees in urban, suburban, and rural areas of

Maryland, USA have documented values between 7

and 131 ppb [43��]. A similar study in Quebec, Canada

evaluated pesticide residue concentrations in field pud-

dles during the planting of treated-maize seed and

detected clothianidin and thiamethoxam at values be-

tween 0.01 and 63 ppb [44��], which can exert sublethal

effects on honey bees.

Quantifying impacts at the ecosystem level

Although the levels of neonicotinoids applied to each

seed are readily available, there is almost no knowledge

about the efficiency of translocation (i.e., the uptake and

circulation of active ingredients by seedlings from the

treated seed) or the concentration of active ingredients in

various plant tissues after germination and during the

growth and maturation of crop plants. This represents a

key gap in our understanding of the environmental fate of

these compounds. The degree to which these compounds

may remain in crop soils and later translocate into flower-

ing weeds or subsequent crops in the same field is also

unclear. The potential for abraded seed treatments to

move across the landscape has also not been quantified.

Given that these compounds are highly water soluble and

act systemically, there is the potential for dispersing

residues (e.g., in planter dust) to be absorbed by plant

tissues or dissolved in surface or ground water. This is of

particular importance in many North American crop

fields, where fields are drained using a system of perfo-

rated, buried pipes that convey excess water to drainage

ditches at field margins.

Synthesis and future directions
The additive effects of these various exposure routes

are still being quantified. However, given the area

devoted to production of crops grown from neonicoti-

noid-treated seeds, it is clear that a great degree of

temporal and spatial overlap exists between neonicoti-

noids and pollinators and other non-target organisms.

Exposure can take place through various matrices —

including air-borne and stationary dusts, soil, plant

products, and water. For honey bees, where most cur-

rent research is focused, future estimates of individual

and colony-level effects of these exposures should in-

corporate these multiple routes into assessments of risk

posed by neonicotinoid residues. Of particular interest

is the typical period of sowing of many annual crops

grown from neonicotinoid-treated seeds, which corre-

sponds closely with flowering of spring blossoms and the

concomitant increase in honey bee foraging activity

across the landscape [45].
noid seed treatments and honey bees, Curr Opin Insect Sci (2015), http://dx.doi.org/10.1016/

www.sciencedirect.com
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