Integrating species distribution and occupancy modeling to study hellbender (Cryptobranchus alleganiensis) occurrence based on eDNA surveys

Jeronimo G. Da Silva Neto, William B. Sutton, Stephen F. Spear, Michael J. Freake, Marc Kéry, Benedikt R. Schmidt

Abstract

Managers often rely on species surveys and distribution models to evaluate species occurrence and develop management and conservation plans. However, these tools are rarely used in concert. We used a three-step framework to evaluate the distribution of a declining and elusive freshwater amphibian species, the hellbender salamander (Cryptobranchus alleganiensis). We used the Maximum Entropy (MaxEnt) algorithm to develop a habitat suitability model to guide sampling, environmental DNA (eDNA) surveys to ground truth the habitat suitability model, and multi-level occupancy modeling to assess species presence, while accounting for eDNA detection errors. Our suitability model (AUC = 0.941, True Skill Statistic = 0.7, sensitivity and specificity = 0.86) identified the greatest amount of high and very highly suitable habitat in the Interior Plateau and Blue Ridge ecoregions of the study area. We used eDNA survey results (n = 284 sites) to evaluate model fit and detected the species at 65 sites. Detection probability (p) was 0.692 (95% CRI: 0.547, 0.818) at the site level and 0.674 (95% CRI: 0.621, 0.721) at the quantitative PCR level. Ecoregion was the primary covariate that explained occupancy, with greatest estimates in the Blue Ridge ecoregion 0.695 (95% CRI, 0.390, 0.925). Although the MaxEnt output was not significantly correlated with occupancy probability, we established a relationship between habitat quality and the number of eDNA detections. This study highlights the use of a multi-level framework to optimize sampling, assess model fit, account for imperfect detection, and evaluate the distribution of rare species that have limited occurrence data available.

Keywords: Amphibian conservation, Freshwater biodiversity, MaxEnt, Detection, Probability, Ecoregion, Cryptobranchus, Occupancy model

1. Introduction

Efforts to inform conservation management and remediate causes of species declines are often impaired by the lack of baseline distribution data (Collins and Crump, 2009). True absence data are rare, and existing species occurrence datasets can be unrepresentative of true species occurrence due to imperfect detection, sampling bias, and inconsistent sampling approaches (Newbold, 2010; Kéry and Royle, 2016, 2020). Lack of distribution data can be especially challenging when developing range-wide conservation plans for elusive, rare, or declining species (Collins and Crump, 2009). Large scale surveys for rare species can be costly, time consuming, and random sampling is often unlikely to result in acquisition of numerous species detections (Buckley and Beebee, 2004; Beebee and Griffiths, 2005; Goldberg et al., 2011).

An effective method to inform range-wide management decisions is to develop species distribution models (SDM) that permit managers to optimize their conservation funding through prioritization of survey efforts. As presence data may be the only occurrence data available for rare species, presence-only SDM approaches can be used to create habitat suitability models (Newbold, 2010; Elith et al., 2011). In general, SDMs estimate the potential distribution of target species across the landscape by relating species distribution data (e.g., presence-only data and pseudo-absences), with known or suggested environmental factors required to maintain viable populations of the target species (Elith and Leathwick, 2009; Phillips et al., 2006). Although habitat suitability models can be an effective tool to evaluate potential species distribution and identify priority conservation areas, models are often not validated through field surveys due to cost limitations or time restrictions, which...
limits their predictive performance (Guisan et al., 2013; Riaz et al., 2019). As a result, advancement of conservation efforts may be jeopardized if decisions are based on inaccurate models (Loiselle et al., 2003).

Ground-truthing (i.e., evidence of species presence confirmed through surveys) is an important validation step that can be used to assess the performance of a habitat suitability model, strengthen model inference, and better inform occurrence-based management decisions (Greaves et al., 2006). Environmental DNA (eDNA, hereafter) sampling, for example, is a non-invasive method for monitoring species in both terrestrial and aquatic systems (Rees et al., 2014). Recent research on amphibians, reptiles, and fish indicate that eDNA can provide a more rapid, cost-effective, and less labor-intensive survey method compared to traditional field surveys (Goldberg et al., 2011; Spear et al., 2015).

Even though eDNA has shown to be a reliable alternative to traditional field survey methods, species detection during eDNA surveys is not perfect and can be impacted by a variety of factors, including target animal abundance, weather conditions, and water and soil chemistry (Stewart, 2019). Occupancy modeling (MacKenzie et al., 2003) represents one SDM method that permits prediction of a species distribution, while accounting for factors that impact detection. By accounting for imperfect detection, researchers can assess survey effectiveness and accuracy of species distribution predictions (Kéry et al., 2013; Peterman et al., 2013). These data in turn can be used to assess accuracy of a habitat suitability model used to guide sampling efforts.

Field surveys and SDMs are commonly used to effectively develop and manage species-specific conservation plans but are rarely used in concert (but see Riaz et al., 2019 and Peterman et al., 2013). In this study we demonstrate the development and implementation of a robust multi-level approach to evaluate the distribution of a declining and elusive freshwater amphibian species. Our approach consisted of three main phases, including 1) development of a habitat suitability model, 2) ground-truthing of the habitat suitability model via eDNA surveys, and 3) evaluation of survey data using multi-level occupancy modeling to account for imperfect detection. Through this three-tier approach, we demonstrate how researchers can enhance distribution data for species by optimizing sampling efforts and accounting for imperfect detection. The focal species for this study was the hellbender salamander (Cryptobranchus alleganiensis), which was chosen as a model species due to rapid range-wide declines, lack of range-wide distribution data, and unique life history characteristics (e.g., strong site fidelity, fully aquatic dependence, elusive behaviors). Our objectives were to 1) model and quantify suitable habitat for hellbenders within our study area, 2) use eDNA to assess hellbender distribution and validate the habitat suitability model, 3) use occupancy modeling to evaluate field survey results, and 4) identify covariates that describe occupancy of C. alleganiensis. These four objectives, accomplished in their respective order, provide a robust species distribution evaluation approach that can be applied to a variety of other elusive, threatened, and/or endangered species.

2. Materials and methods

2.1. Predictive habitat suitability model

2.1.1. Model species and study area

Hellbender salamanders, including the Eastern (C. alleganiensis
 alleganiensis) and Ozark (C. alleganiensis bishopi) subspecies, are fully aquatic, benthic inhabitants of streams and rivers in the eastern and midwestern United States of America (Petranka, 1998). Both subspecies have experienced range-wide population declines due to a variety of stressors, including habitat fragmentation, accelerated sedimentation in waterways, aquatic contaminants, infectious diseases, and poaching (Nickerson and Mays, 1973; Wheeler et al., 2003; Briggler et al., 2007; Burgmeier et al., 2011; Freake and DePerno, 2017). Despite research completed over the past four decades, challenges remain in the field of C. alleganiensis conservation and standardized population assessments throughout the geographic range have often been limited to rivers and streams with known populations.

Our study area included the known range of C. alleganiensis in Tennessee, USA (Petranka, 1998; Fig. 1), which includes the Upper, Middle, and Lower Tennessee River, and Cumberland River basins. A considerable portion of the C. alleganiensis range in Tennessee occurs within the Tennessee River Basin, which currently holds the greatest number of hellbender populations across the historical range (USFWS, 2018). Therefore, our study area constitutes a significant portion of the species total geographic range.

2.1.2. Step 1: predicting habitat suitability with MaxEnt

We used the MaxEnt algorithm (Phillips et al., 2006, 2009) to develop a habitat suitability model for C. alleganiensis within the study area (Fig. 2 – Step 1). We acquired a total of 153 occurrence data points from seven main sources, including the Biodiversity Information Serving Our Nation (BISON), Global Biodiversity Information Facility (GBIF), Conservation Fisheries, Tennessee Species Wildlife Action Plan (TNSWAP), Tennessee Herpetofaunal Atlas (Austin Peay University), VertNet (www.verte.net.org), and the Tennessee Valley Authority (TVA) databases. We selected environmental variables based on our biological knowledge of the target species, and from studies that evaluated habitat parameters associated with the presence of C. alleganiensis and other sensitive aquatic taxa (Heino et al., 2003; Messerman, 2014; Pugh et al., 2016). We used multiple environmental variables, including elevation, stream flow direction, geology, hillshade, land use, mean annual precipitation, slope, Strahler stream order, and temperature, with a minimum data grain of 30 m (Appendix A - Table A1). We developed a background points layer (i.e., pseudo-absences) by allocating 10,000 randomly generated points among modeled streams and rivers throughout the study area. For more information on environmental variables, see Appendix A – Table A1.

We used a ten-fold cross-validation approach to estimate habitat suitability across the study area (Messerman, 2014; Sutton et al., 2015). The initial model layer represented all streams within the study area with raster cells classified from least suitable (0.0001) to highly suitable (0.9999) on a logistic scale. We applied a 10-percentile training presence logistic threshold (0.141; hereafter referred as F10 threshold) to the resulting model layer to generate a binary map (i.e., suitable vs. not suitable), where cells were considered “suitable” if the suitability score was greater than the F10 threshold (Freeman and Moisen, 2008). Although threshold selection is often arbitrary, the F10 threshold provides a more conservative approach and avoids overfitting compared to other thresholds such as the minimum training presence (Tinoco et al., 2009; Jarnevich and Reynolds, 2011). We used Jekn’s natural breaks classification (Chen et al., 2013) in ArcGIS v.10.3 to further classify logistic suitability scores above the F10 threshold score into the four following habitat suitability categories: Category 1 (low suitability = 0.141–0.348), Category 2 (medium suitability = 0.348–0.555), Category 3 (high suitability = 0.555–0.761), and Category 4 (very high suitability = 0.761–1.0). By applying this two-step process (i.e., applying a threshold and using natural breaks), we developed a raster layer of waterways within our study area divided into four suitability classes to aid in site selection for eDNA sampling.

We evaluated fit of the resulting habitat suitability model using the area under the Receiver Operating Characteristic Curve (AUC; Appendix C - Fig. C1) and True Skill Statistic (TSS). We considered the model informative when the AUC value was above 0.75 (i.e., 75% of the time the model correctly differentiates a test point from a random point; Fielding and Bell, 1997; Phillips, 2006; Sobek-Swant et al., 2012). The average TSS was calculated based on recommendations in Allouche et al. (2006) and Monserud and Leemans (1992) and is evaluated on a scale from −1 to +1, where values below 0.2 represent poor/as good as random model performance, and values above 0.7 represent very good/excellent model performance. We used both the AUC and TSS to evaluate model performance because AUC evaluates differences in distribution between random and occurrence points independent of thresholds, whereas TSS accounts for omission and commission errors based on a threshold and is not as sensitive to size of the modeled area (Lobo et al., 2008; Phillips and Elith, 2010; Warren and Seifert, 2011).

We evaluated the MaxEnt output via response curves and Jackknife tests, which we used to assess how each variable contributed to the model predictions. Output response curves showed the mean effect of each environmental variable on model predictions over 10 replicates, whereas Jackknife tests assessed differences between variables and individual variable contribution.

We used a three-phase process to assess the distribution and occupancy of C. alleganiensis within our study area. Briefly, these phases consisted of a presence-only habitat suitability model (Phase 1), range-wide ground-truthing of the habitat suitability model using eDNA data (Phase 2), and final assessment of occupancy and detection probabilities based on ground-truthing data (Phase 3). Each main step was composed of two or three steps completed in order. The “Validation step” checkmarks demonstrate that one next step was used to validate the results from the previous step.

Fig. 2. We used a three-phase process to assess the distribution and occupancy of C. alleganiensis within our study area. Briefly, these phases consisted of a presence-only habitat suitability model (Phase 1), range-wide ground-truthing of the habitat suitability model using eDNA data (Phase 2), and final assessment of occupancy and detection probabilities based on ground-truthing data (Phase 3). Each main step was composed of two or three steps completed in order. The “Validation step” checkmarks demonstrate that one next step was used to validate the results from the previous step.
2.2. Step 2: validation of habitat suitability model through environmental DNA sampling

2.2.1. Field surveys

Between 2012 and 2016, we collected and filtered water samples from 284 sites to assess presence of \textit{C. alleganiensis} DNA (Fig. 2 – Step 2) using the collection protocol described by Spear et al. (2015). Between 2012 and 2015, we sampled 84 sites once based on goals of a separate ongoing study. In 2016, we allocated and sampled 200 sites based on our habitat suitability model. Of the 200 sites, we sampled 170 sites once and 30 sites three times (i.e., each of the 30 sites was sampled on June, July, and August 2016). We selected the 170 sampling sites by allocating 1000 random points across modeled waterways in the study area and selected approximately 42 survey points within each habitat suitability category based on accessibility. Thirty out of 200 sampling sites were not randomly selected; instead, we selected them based on previous data suggesting that 5 sites were negative, and 25 sites were positive for \textit{C. alleganiensis} eDNA. These 30 sites were equally stratified among habitat suitability categories based on the MaxEnt suitability model and Level III ecoregions throughout the range of \textit{C. alleganiensis} within the study area to control for potential influences of habitat quality and ecoregion effects on detectability. We ensured a minimum sampling distance of 5 km between all sites based on both home-range estimates for \textit{C. alleganiensis} and uncertainties associated with eDNA sampling techniques to increase site independence (Peterson and Wilkinson, 1996; Deiner and Altermatt, 2014). For detailed field survey and sample collection methods, refer to Appendix B.

2.2.2. Laboratory methods

We used modified protocols reported in Goldberg et al. (2011) and Spear et al. (2015) to extract, purify, and amplify DNA from filters utilized to collect eDNA from water samples. We used DNeasy Blood and Tissue Kita (Qiagen, Inc.) and followed the standard protocols except we used a Qiashredder (Qiagen, Inc.) spin column after the lysis buffer step. We amplified DNA via quantitative PCR (qPCR) with reverse- and forward primers and probe that amplified a 104 bp region of mitochondrial cytochrome-B as recommended in Spear et al. (2015) These primers and probes were developed based on DNA from individuals collected across the entire \textit{C. alleganiensis} range as described by Sabatino and Routman (2009). We considered a sample positive for \textit{C. alleganiensis} DNA if 2/3 or 3/3 replicates amplified. We considered samples that had 1/3 replicates amplify as questionable positives. We amplified all questionable positive samples a second time and considered these samples positive if 1/3, 2/3, or 3/3 replicates amplified. We considered a sample negative for eDNA if 0/3 replicates amplified, or if a questionable sample had 0/3 replicates amplify the second round. For a detailed description of laboratory methods, refer to Appendix B.

2.3. Step 3: occupancy modeling

We used the multilevel occupancy model described by Nichols et al. (2008), Mordecai et al. (2011), Schmidt et al. (2013), and Kéry and Royle (2016, Section 10.10 which includes R and JAGS code to fit the model to the data) to evaluate potential covariates that describe occupancy of \textit{C. alleganiensis} while accounting for imperfect detection of the eDNA sampling method (Fig. 2 – Step 3). We used eDNA detection/non-detection data based on repeated site visits and triplicate PCR from 284 sites sampled during seven sampling events: 2012, 2013, 2014, 2015, 2016A (May – July), 2016B (July – August), 2016C (August – October) to assemble a detection matrix. The model estimates an occupancy probability and detectability at two scales: detectability in the water sample (given presence at the sampling site; “availability” in Schmidt et al., 2013) and detectability in the PCR, given that eDNA is in the water sample. Using uniform priors as in Schmidt et al. (2013) we fitted a single model with all covariates of interest to the data using JAGS and R (package “jagsUI”; Plummer, 2003; Kéry and Schaub, 2012; Kellner, 2018). For all probabilities, we used uniform priors in the interval (0,1). For regression coefficients, we used uniform priors on the interval (−10,10). All models were run using a burn-in of 2000, 3 chains, and thinning 1 in 10, with 20,000 iterations. Convergence was assessed using the Brooks-Gelman-Rubin statistic (Kéry and Schaub, 2012). Convergence was satisfactory when R-hat values were smaller than 1.1.

We evaluated how linear and quadratic sampling date patterns may impact detection probability in the water sample while detectability was held constant at the qPCR (as in Schmidt et al., 2013). We evaluated the influence of sampling day because previous studies of aquatic salamanders found a quadratic effect of date on detectability (e.g., de Souza et al., 2016). For occupancy, we used five covariates that we hypothesized might affect \textit{C. alleganiensis} occupancy across the study area, including elevation, Strahler order (as a continuous variable), agricultural and forest land cover, and ecoregion (i.e., geographical units defined by similar ecosystems, physiography, geology; Wineland et al., 2019). The effect of land cover was measured at the HUC 12 scale (i.e., hydrological units that capture tributary systems). We used the Geospatial Modelling Environment software (Spatial Ecology LLC 2015) to calculate the proportion of land cover categories within each HUC 12 watershed across the study area and used forest and agriculture land use categories in our analysis. Because different sites were sampled in different years, we used a year-specific intercept which was defined as a random effect. To further assess the fit of our MaxEnt model, we compared the MaxEnt logistic output with occupancy model results.

3. Results

3.1. MaxEnt habitat suitability model

Our habitat suitability model performed considerably better than random as indicated by an AUC value of 0.941 (STD = 0.023; Appendix C - Fig. C1), along with a TSS value of 0.77, and sensitivity and specificity values of 0.86. According to our analysis of variable contribution, the Strahler stream order variable contributed greatest to the suitability model (85.4%), followed by geology (7.4%), mean annual precipitation (2%), mean annual temperature (1.5%), land use and elevation (0.9% each), slope (0.8%), hillshade (0.6%), and flow accumulation (0.5%; Appendix C – Table C1). Strahler stream order was also the most informative variable (i.e., contributed the most amount of unique information to the model), followed by geology and land use (Appendix C - Fig. C2).

After application of the F10 threshold, the total suitable stream area (i.e., stream suitability Categories 1–4) for \textit{C. alleganiensis} within the study area represented 12.2% (~422 km²) of the total modeled stream area (~3463 km²) before F10 threshold was applied; Table 1 - Frame A). The total suitable stream area was comprised of 48.6% (~205 km²) Category 1 streams, 24.4% (~103 km²) Category 2 streams, 24.6% (~104 km²) Category 3 streams, and 2.4% (~10 km²) Category 4 streams (Table 1 - Frame A). The Interior Plateau ecoregion contained the greatest percent of all suitable (Category 1 or greater) streams (53%, ~225 km²), followed by the Ridge and Valley (23%, ~97 km²), Blue Ridge (13%, ~55 km²), Southwest Appalachian (8%, ~33 km²), Southeastern Plains (2%, ~8 km²), and Central Appalachian ecoregions (1%, ~5 km²; Table 1 - Frame A). After controlling for ecoregion area, the Interior Plateau had the greatest proportion (~31%, ~70 km²) of Category 3 streams, followed by the Ridge and Valley (~23%, ~23 km²) and Blue Ridge (~14%, ~7 km²), whereas the Central Appalachian ecoregion had the least (~3%, ~0.1 km²; Table 1 - Frame B). When considering only the highest suitability category, the Southeastern Plains had the greatest proportion (~10%, ~0.7 km²) of Category 4 streams followed by the Blue Ridge (~9%, ~5 km²), whereas the Central Plains and Southwest Appalachian ecoregions had no or very few streams in Category 4 (Table 1 - Frame B).
Table 1

<table>
<thead>
<tr>
<th>Ecoregion</th>
<th>Suitable stream per suitability category (km²)</th>
<th>Total (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Central Appalachians</td>
<td>3.09</td>
<td>1.74</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>29.72</td>
<td>12.07</td>
</tr>
<tr>
<td>Southwest Appalachians</td>
<td>19.33</td>
<td>11.27</td>
</tr>
<tr>
<td>Ridge and Valley</td>
<td>46.75</td>
<td>25.59</td>
</tr>
<tr>
<td>Southeastern Plains</td>
<td>3.59</td>
<td>2.24</td>
</tr>
<tr>
<td>Interior Plateau</td>
<td>102.19</td>
<td>50.64</td>
</tr>
<tr>
<td>Total</td>
<td>204.68</td>
<td>103.54</td>
</tr>
</tbody>
</table>

3.2. Environmental DNA field sampling

Overall, from 2012 to 2016, we sampled 284 sites and detected C. alleganiensis eDNA at 65 individual sites (Table 2). Category 1 streams had the fewest proportion of detections (13.2%) and greatest proportion of non-detections (86.8%), whereas Category 4 streams had the greatest proportion of detections (46.3%) and fewest proportion of non-detections (53.7%; Table 2). The Blue Ridge ecoregion had the greatest number of detections (34), followed by the Interior Plateau (17), Ridge and Valley (10), and Southwest Appalachian ecoregions (4), for a total of 65 detections across the study area (Table 2). All field and lab controls were negative, which indicated that there was no contamination during field sampling or lab procedures. Although we were able to consistently amplify standards, our 10⁻⁶ μL standard failed to amplify completely (all three wells did not amplify) in 9 out of 19 plates and failed to amplify at least once (one or two wells did not amplify) in 5 additional plates. Therefore, we considered our limit of detection to be 0.000524 ng/μL (10⁻⁵).

3.3. Occupancy model

The occupancy model showed that detection probability at the PCR level was 0.674 (95% CRI: 0.621, 0.721). Detection probability at the field level was on average 0.692 (95% CRI: 0.547, 0.818) and did not depend on sampling date, but we note that the extreme uncertainty in both the linear and the quadratic term of Julian date makes this result highly inconclusive. Mean occupancy across the study area was 0.436 (95% CRI: 0.073, 0.858). Parameter estimates of the variables describing occupancy are shown in Appendix A - Table A2. Occupancy varied among ecoregions. Estimated occupancy (and 95% CRI) for the ecoregions were 0.203 (0.070, 0.432) for the Interior Plateau, 0.695 (0.390, 0.925) for the Blue Ridge, 0.408 (0.172, 0.710) for the Ridge and Valley, and 0.360 (0.165, 0.729) for the Southwestern Appalachians (Fig. 3 – Frame A). Other covariates had no strong effects and credible intervals of estimated coefficients overlapped zero.

In our analysis of the relationship between MaxEnt logistic output and occupancy modeling results, MaxEnt logistic output positively influenced occupancy probability, but the credible intervals overlapped zero (coefficient: 1.123, 95% CRI: −0.268, 2.558, probability that the coefficient was greater than zero = 0.943; Fig. 3 – Frame B).

4. Discussion

We quantified the predicted suitable habitat area for C. alleganiensis to be only approximately 422 km² within the study area. A large portion of Category 3 and 4 streams were located within ecoregions that were, and will most likely continue to be, impacted by anthropogenic factors (Green et al., 2003; Drummond and Loveland, 2010). With limited availability of suitable habitat for C. alleganiensis within the study area, and the growing threats to stream habitat, the need is apparent for additional biological information on the species (Ali et al., 2003). The MaxEnt suitability model indicated that Strahler stream order (stream orders 4–6) and geology (granitic and sedimentary substrates) were important contributors to the habitat suitability model, while our occupancy modeling results show that ecoregion explained C. alleganiensis occupancy. These factors may influence habitat suitability and site occupancy because the species has a strong relationship with substrate composition and stream hydrological patterns, which are determined by ecoregion-specific geomorphology and topography (Platts, 1979; Quinn et al., 2013).

The effect of ecoregion on occupancy can serve as a proxy for the effect of land use practices on habitat quality. Bodinof Jachowski et al. (2016) suggested that even though C. alleganiensis occupancy was explained mainly by geology and physiography, agriculture and development could have a negative effect on species occurrence. Urbanization and agricultural practices affect water quality, increase sediment input into waterways, and significantly disrupt hydrological patterns (Malmqvist and Rundle, 2002). Our occupancy model results support
the hypothesis that *C. alleganiensis* occupancy was greater within ecoregions currently with lower (and likely lower historical) levels of anthropogenic land use change (i.e., conversion of forest to agriculture and urban areas). Congruent with results presented by Bodinof Jachowski et al. (2016), the Blue Ridge ecoregion within the study area had the greatest occupancy estimates compared to the Ridge and Valley, Southwestern Appalachian, and Interior Plateau ecoregions. The Blue Ridge ecoregion has historically experienced the smallest net percent change in forest cover between 1973 and 2000, whereas the Interior Plateau and Ridge and Valley experienced greater net percent change in forest cover, mainly due to agriculture and mechanical forest disturbance (Drummond and Loveland, 2010). This historical land use pattern may also explain why the Blue Ridge ecoregion contained the greatest proportion of very high suitability streams and the greatest occupancy estimate compared to all other ecoregions. Although our habitat suitability model shows that the Southeastern Plains ecoregion had a relatively greater proportion of very high suitability streams than the Blue Ridge ecoregion; only a small portion of the Southeastern Plains ecoregion is located within the study area. Therefore, we believe that these results do not represent the proportion of suitability streams within the entire Southeastern Plains ecoregion.

Compared to results from Franklin (2016), where detection probabilities for *C. alleganiensis* via eDNA in North Carolina were approximately 90%, we reported considerably lower detection estimates of approximately 67%. Since eDNA concentration is also a function of species abundance, density, and biomass, lower quality sites with lower species abundance would consequently have lower eDNA available for detection (Pilliod et al., 2013). We believe the difference in detection estimates between studies can be explained by the large disparities in species range size, habitat quality, and species abundance sampled in each study. We recommend that future studies conduct abundance surveys at a sub-sample of sites to account for errors in detection due to abundance-based heterogeneity.

Although our model sensitivity and specificity were greater than 85%, we acknowledge that our MaxEnt habitat suitability model has limitations. Because we created our habitat suitability model using *C. alleganiensis* occurrence data (1950–2016) from a different period than some of the environmental covariates (e.g., land use cover 2001–2010), the effect of these covariates on the target species may not be fully represented. In addition, our MaxEnt model does not take into consideration small-scale biotic, abiotic, and anthropogenic factors that are important determinants of species distribution patterns (Barve et al., 2011). For example, our habitat suitability model does not take into consideration inter and intra-specific competition or lack of micro-habitat characteristics such as cover rock presence or low levels of substrate embeddedness (e.g., Da Silva Neto et al., 2019). The lack of a significant relationship between the MaxEnt logistic output and occupancy probability highlights the predictive limitations of our model. However, there were several benefits of using a habitat suitability model in this study. Given the status of the species and its rapid decline, random sampling within the thousands of stream miles within the study area would likely be ineffective for providing informative distribution data. In addition, the resulting MaxEnt model is a tool that can guide future local and regional conservation efforts such as watershed level habitat mitigation, implementation of best management practices, and microhabitat surveys. Our overarching goal was to provide managers with a robust, but adaptable, framework to evaluate *C. alleganiensis* distribution across the study area. Following the principles of adaptive management, the model can be updated based on the acquisition of new locality data, which will aid in the development of management and conservation strategies that will contribute to the long-term conservation of rare and elusive species such as *C. alleganiensis*.

5. Conclusions

Our study demonstrates that by using a structured analysis framework that combines species distribution modeling, ground-truthing (via eDNA surveys), and multi-level occupancy modeling, we were able to make robust inferences on baseline site occupancy for *C. alleganiensis* across the study area, evaluate factors that influence occupancy, and identify areas of high conservation concern. Further, we were able to estimate the area of suitable streams predicted to be available for the target species. A large portion of suitable streams located within ecoregions under high levels of development will most likely continue to be affected by anthropogenic factors. Furthermore, our study provides detection and non-detection data for *C. alleganiensis* at 284 sites that were previously not sampled. This information can contribute to future species status assessments and the development of species-specific management plans. Overall, this multi-level distribution analysis approach can be applied to many rare, threatened, and endangered species with minimal occurrence and/or abundance data.

It is important to note that our habitat suitability model may not
represent habitat requirements for long-term persistence of the target species. Therefore, to increase the inference of this study, future research should focus on selecting high quality streams with positive detections within each ecoregion and conduct physical surveys to assess the habitat associated with \textit{C. alleganiensis} abundance. This information will not only help further ground-truth model results, but will also provide baseline population demographics that will facilitate long-term assessment of the effects of land use change on \textit{C. alleganiensis} populations within different ecoregions. Future conservation of the species may rely on prioritizing populations and areas of highest conservation need. Therefore, demographic and distribution data will be essential if future conservation strategies include targeted stream restoration, enhanced watershed protection, population augmentation, and repatriation of individuals into priority conservation areas.

CRediT authorship contribution statement

J. G. da Silva Neto: Conceptualization, Methodology, Formal Analysis, Visualization, Investigation, Writing – Original draft, Writing – Review & Editing; **W.B. Sutton:** Conceptualization, Methodology, Resources, Formal Analysis, Writing – Original draft, Writing – Review & Editing, Supervision, Project administration; **S. F. Spear:** Conceptualization, Investigation, Resources, Supervision; **M. J. Freake:** Conceptualization, Investigation, Resources; **M. Kéry:** Formal Analysis, Writing – Original draft, Writing – Review & Editing; **B. R. Schmidt:** Formal Analysis, Writing – Original draft, Writing – Review & Editing, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Tennessee State University for logistical support and the USDA-NIFA Evans Allen Capacity Program (Project Number TENX-1517-CCAP) for financial assistance related to sample collection and data analysis. We thank The Wilds staff for their hospitality and access to laboratory assets. We thank the anonymous reviewer for technical assistance and training, and S. Nahashon for access to laboratory facilities. Special thanks to T. Lopes, D. Fraleigh, M. Reed, K. Pilarski-Hall, and S. McLaughlin for assistance in the field, R. Hardman for technical assistance and training, and S. Nahashon for access to additional laboratory assets. We thank the anonymous reviewers for comments on earlier versions of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.biocoe.2020.108787.

References

