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Abstract Digital map of forest dynamics is emerg-

ing as a useful research and management tool. As a key

issue to address in developing digital maps of forest

dynamics, spatial autocorrelation has been distin-

guished into ‘‘true’’ and ‘‘false’’ gradients. Previous

ecological models are mostly focused on either ‘‘true’’

or ‘‘false’’ gradient, and little has been studied to

simultaneously account for both gradients in a single

model. The main objective of this study was to

incorporate both gradients of spatial autocorrelation in

a deterministic geospatial model to provide improved

accuracy and reliability in future digital maps of forest

dynamics. The mapping was based on two underlying

assumptions—unit homogeneity and intrinsic sta-

tionarity. This study shows that when the factors

causing the spatial non-stationarity have been

accounted for, forest states could become a stationary

process. A prototype geospatial model was developed

for the Alaska boreal forest to study current and future

stockings across the region. With areas of the highest

basal area increment rate projected to cluster along the

major rivers and the lowest near the four major urban

developments in Alaska, it was hypothesized that

moisture limitation and inappropriate human interfer-

ence were the main factors affecting the stocking rates.

These results could be of unprecedented value,

especially for the majority of Alaska boreal region

where little information is available.

Keywords Growth and yield � Matrix model �
Universal kriging � Controlled trend surface � Alaska

boreal forest

Introduction

Digital map of forest dynamics (DMFD), which has

become feasible with the recent developments in

geographic information system (GIS) and computer

technology, is emerging as a useful research and

management tool. DMFD is primarily composed of

spatially and temporally integrated layers of data from

which current and projected future stand attributes,

such as stocking, species composition, and diversity at

any user-specified location across a large-scale area

could be instantly retrieved (Liang and Zhou 2010).

When incorporated with a harvest or artificial regen-

eration component, DMFD could also be used to

develop spatial-specific forest management regimes

that will greatly reduce the time and cost in decision-

making.

In mapping forest dynamics, spatial autocorrela-

tion—a general property of most ecological attributes

due to physical or community processes (c.f. Legendre
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1993)—is a key issue to address (see Liang and Zhou

2010, p. 2351). Spatial autocorrelation represents the

dependency among observations that is associated

with their geographic locations and distances. As a

basic statistical property of ecological variables and a

fairly new ecological paradigm, spatial autocorrela-

tion is ‘‘functional’’ (Legendre 1993, p. 1659) in

ecosystem functioning, enabling estimation of random

ecological variables in a geographic space beyond

sampled areas. On the other hand, spatial autocorre-

lation, if not appropriately addressed, may affect the

statistics properties of map data due to its violation of

the assumption of independence of most standard

statistical procedures (Legendre 1993), rendering the

output maps less reliable.

Spatial autocorrelation has been distinguished into

‘‘true’’ and ‘‘false’’ gradients (Legendre et al. 1990).

Representing a spatial trend across the region is a

‘‘true’’ gradient—global trend, which can be

expressed as a function of geographic coordinates.

A ‘‘false’’ gradient—autocorrelation represents a

phenomenon in which observations at neighboring

points are correlated with one another (Legendre et al.

1990). Different approaches have been used to address

these two distinctive gradients. The ‘‘true’’ gradient

has been accounted for mainly through trend surface

(e.g. Gittins 1968; Kuuluvainen and Sprugel 1996) or

controlled trend surface (CTS) models (Liang and

Zhou 2010). The ‘‘false’’ gradient has often been

addressed with geostatistical interpolation models,

autoregressive models, and geographically weighted

regression models (c.f. Miller et al. 2007). Kriging

(Cressie 1993; Bailey and Gatrell 1995) is the most

popular geostatistical interpolation approach since the

estimators are unbiased (e.g. Bolstad et al. 1998;

Pfeffer et al. 2003; Miller 2005). Previous ecological

models are mostly focused on either ‘‘true’’ or ‘‘false’’

gradient, and little has been studied to simultaneously

account for both gradients in a single model.

The main objective of this study was to incorporate

both gradients of spatial autocorrelation in a deter-

ministic geospatial model to provide improved accu-

racy and reliability in future digital maps of forest

dynamics. A prototype geospatial model was devel-

oped for the Alaska boreal forest, the largest forest

component of the Alaska landscape that occupies a

vast area of roughly 500,000 km2 (Olson et al. 2001).

Growing under the most severe climate conditions

in the world, including an air temperature as low as

-70 �C and an annual precipitation that rarely

exceeds 50 cm (Mitchell et al. 2004; Liang et al.

2011), this type of forest is characterized by large

commercial stands of white spruce and cold-resistant

hardwoods (Phelps 2005). Despite its high potential to

be managed for timber and biomass (Liang 2010),

little is known on which major factors could affect

forest productivity and what the future stocking and

species composition would be across the region,

especially in remote areas with no forest inventory.

Materials and methods

Data

Two types of data were used in this study for model

calibration and simulation: remote sensing data

and ground-measured forest inventory data. Remote

sensing data, introduced in §Projection and spatial

inference, were only used for mapping and estimating

initial stand basal area distribution. Forest inventory

data consisted of remeasured stand population on 446

permanent sample plots established across interior and

south-central Alaska since 1994 (see Cooperative

Alaska Forest Inventory (CAFI), Malone et al. 2009).

The sample area, stretching over 500 km from the

Fairbanks area in the north to the Kenai Peninsula in

the south and the International Boundary in the east,

represents a wide range of species composition and

physiographic conditions (Fig. 1). The fixed-size

permanent sample plots, each circular in shape and

0.04 ha (0.10 ac) in size, were remeasured with a

5-year interval to monitor natural forest succession.

Periodic measurements on the permanent sample

plots include physical site attributes, such as geo-

graphic coordinates (K, U), slope (L), aspect (a), and

elevation (z); and tree data such as species, diameter at

breast height (D), and status (recruitment, live, or

dead) (Table 1). With the wide geographic distribu-

tion, sample plots are distanced from 0.3 to 540 km,

with a mean of 282 km (Table 2). This large variation

of plot distance made it possible to investigate large-

scale spatial autocorrelation.

The Alaska boreal forest is largely dominated by

only four species—Betula neoalaskana Sarg. (Alaska

birch), Populus tremuloides Michx. (quaking aspen),

Picea glauca (Moench) Voss (white spruce), and

Picea mariana (Mill.) B.S.P. (black spruce). Due to

1092 Landscape Ecol (2012) 27:1091–1108

123



the similar growth pattern (Liang 2010) and spectral

reflectance performance (Cipar et al. 2004), Alaska

birch and quaking aspen were grouped here as

deciduous species, accounting for 48 % of the total

basal area, and white spruce and black spruce were

grouped as coniferous species, covering 42 % of the

total basal area. Other species in the region, including

Populus trichocarpa Torr. & Gray (black cotton-

wood), P. balsamifera L. (balsam poplar), Larix

laricina (DuRoi) K.Koch (Tamarack), and Betula

kenaica W.H. Evans (Kenai birch), accounted for less

than 10 % of the total basal area.

Model description

Assuming B(s)—stand basal area (m2 ha-1) at point

locations s—was a random process which satisfied the

decomposition:

BðsÞ ¼ WðsÞ þ dðsÞ þ e; s 2 D � <2 ð1Þ

where W(�) : E(B(�)) was the deterministic mean

structure representing large-scale variation (true gra-

dient); d(�) was a zero-mean, intrinsically stationary

process with known variogram; and e was a zero-mean

white noise process independent of l and W.

Fig. 1 Geographic

distribution of the

permanent sample plots

(PSP), long-term evaluation

(LE) stands, and their

relative location within the

North America Continent

(inset), with forest types

across the Alaska boreal

region from the 2001 NLCD

Landsat remote sensing

data. Albers equal area conic

projection with standard

parallels
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The geospatial model was developed to estimate

future forest stocking and species distribution

throughout the Alaska boreal forest region. The

model was composed of a dynamics module and a

geospatial module. The dynamics module predicted

point estimates of the future forest population

structures. The geospatial module integrated these

point estimates with large-scale forest stocking,

species distribution, and topographic information to

predict future forest dynamics across the region (see

Fig. 2). The following sections describe how the two

modules interacted in accounting for both the true

and false spatial gradients in forest dynamics across

the region.

True gradient control

The dynamics module of the geospatial model

provided point estimates of forest dynamics for the

inventoried areas. The module could be any type of

forest growth model calibrated for the region, but in

order to address the large-scale variation of forest

dynamics, the CTS Matrix model developed for the

Alaska boreal forest (Liang and Zhou 2010) was

adopted for this study. Please refer to Liang and Picard

(2012) for a comprehensive review of Matrix models.

This model predicted future population structure of

a stand or a pixel on the map which represents the

distribution of trees per unit area by species and size

Table 1 Definition and units of GSM model variables

Variable Definition Unit

a Plot aspect showing the direction to which the plot slope faces. 0 means no slope,

180 and 360 represented south- and north-facing slopes, respectively

Degree

B Stand basal area m2 ha-1

F1 Deciduous species indicator that takes the value 1 if a stand is dominated

by deciduous species, and 0 if otherwise

F2 White spruce indicator that takes the value 1 if a stand is dominated

by white spruce, and 0 if otherwise

L Plot slope Percent

w Euclidean distance between two locations 103 m

K Easting of Albers equal-area conic projection coordinates 106 m

U Northing of Albers equal-area conic projection coordinates 106 m

z Plot elevation m

Table 2 Summary statistics of GSM model variables. Sample was obtained from the first inventory of the 446 permanent sample

plots

B K U w

Deciduous Coniferous All species

Mean 10.87 9.52 20.39 0.34 1.40 281.54

SD 11.06 9.27 10.47 0.13 0.15 159.98

Max 41.26 48.78 48.78 0.65 1.72 539.55

Min 0.00 0.00 0.00 0.17 1.17 0.30

n 446 446 446 446 446 446

cos(a) sin(a) L z F1 F2

Mean -0.01 0.00 10.17 356.24 0.50 0.44

SD 0.79 0.61 12.67 228.90 0.50 0.50

Max 1.00 1.00 77.00 957.19 1.00 1.00

Min -1.00 -1.00 0.00 17.62 0.00 0.00

n 446 446 446 446 446 446

SD standard deviation of the mean, n total number of observations
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(age) class. Future population structures are predicted

from the initial structure with a regeneration vector,

and a growth matrix that accounts for tree upgrowth

and mortality. The CTS Matrix model further accounts

for large-scale spatial autocorrelation in regeneration,

upgrowth, and mortality:

yTþ1ðsÞ ¼ GðsÞyTðsÞ þ RðsÞ ð2Þ

where G(s) and R(s) represent a growth matrix and

recruitment vector respectively which are state- and

spatial-dependent. yT(s) is a column vector of forest

population structure:

yTðsÞ ¼

y1jðsÞT
y2jðsÞT
y3jðsÞT
y4jðsÞT

2
664

3
775; and yijðsÞT ¼

yi1ðsÞT
yi2ðsÞT

..

.

yi19ðsÞT

2
6664

3
7775 ð3Þ

where yij(s)T represents the number of live trees per

unit area of species i (i = 1, 2, 3, 4) and diameter class

j (j = 1,2,…,19) at time T of location s. Equation 2

could be applied iteratively over t years to obtain

yT?t(s), the estimated population structure at time

T ? t (see Fig. 2).

The predicted point basal area BT?t(s) was then

calculated with:

BTþtðsÞ ¼ byTþtðsÞ ð4Þ

where b = [3.14 9 Dj
2/400] was a row vector of mean

circular cross-sectional area (m2) and Dj (cm) was the

mid-point of diameter class j (see Fig. 2).

False gradient control

The geospatial module was developed here to obtain

surface estimates of basal area BT?t(s) across the

region. The control variables were selected from

initial basal area BT(s), forest type F1T(s) and F2T(s) at

year T, and time-independent physiographic variables

Fig. 2 Conceptual design of mapping with the GSM Model

Landscape Ecol (2012) 27:1091–1108 1095

123



P(s) which control for site radiation, nutrient avail-

ability, and moisture (Stage and Salas 2007):

BTþtðsÞ ¼ Xaþ dðsÞ þ e; s 2 D � <2 ð5Þ

where a was a column vector of parameters. The error

vectors d(s) and e were zero-mean intrinsic stationary

random process with known variograms, and zero-

mean white noise process, respectively. X represented

a row vector of trend at known location s:

X ¼ fhðsÞ½ � ¼ 1 BTðsÞ F1TðsÞ F2TðsÞ PðsÞ½ �;
s 2 D � <2

ð6Þ

where P(s) = [z(s) cos(a(s)) sin(a(s)) L(s)], and

fhðsÞ �
R
s

fhðsÞds

�
sj j represented the mean value of

the hth trend variable over the area of pixel s

(h = 1,2,…,8).

To account for the false gradient, a universal

kriging (UK, c.f. Cressie 1993; Matheron 1969) model

was adopted to estimate basal area BT?t(s0) at year

T ? t of any unknown location s0 within the Alaska

boreal region D:

BTþtðs0Þ ¼ x0aþ dðs0Þ; s0 2 D � <2 ð7Þ

where x = [fh(s0)]0, and the error term d(s0) was an

intrinsic stationary random process with known vari-

ograms 2f(w). Basic assumptions behind the universal

kriging model were intrinsic stationarity across the

region, isotropic covariance, and a spherical vario-

gram 2f(w) (Cressie 1993).

According to the universal kriging theory (Cressie

1993), for any random location s0 within the Alaska

boreal region D, the estimated values B̂Tþtðs0Þ can be

expressed as a linear combination of the observed

values BT?t(s) from the 446 permanent sample plots:

B̂Tþtðs0Þ ¼ kBTþtðsÞ; s0; s 2 D � <2 ð8Þ

where k was a row vector of linear coefficients

estimated under the condition for uniformly unbiased

predictor:

k0X ¼ x0ðs0Þ ð9Þ

and under the minimization of kriging variance at

location s0:

r2ðs0Þ ¼ E B̂Tþtðs0Þ � BTþtðs0Þ
� �2 ð10Þ

Model estimation

In the geospatial module, the best linear unbiased

estimator (BLUE) of BT?t(s) and its predicted vari-

ances were obtained with universal kriging (UK,

Cressie 1993; Matheron 1969), based on observed data

from the 446 permanent sample plots. Sample vario-

grams of B̂TþtðsÞ were computed using Cressie’s

robust variogram estimate (Cressie 1993) with non-

spatial control factors from Eq. 6 as covariates. The

computation was performed with geoR (Ribeiro and

Diggle 2001)—a geostatistical analysis package of R

(R Development Core Team 2010). A parametric

empirical variograms model was then fitted by

weighted least squares with a spherical covariance

model (Cressie 1993).

To ensure goodness of fit and simplicity, the

geospatial module was obtained as a reduced form of

the full model (Eqs. 5, 6) based on two information

criteria: Akaike information criterion (AIC, Akaike

1974) and Bayesian information criterion (BIC, Sch-

warz 1978). In this study, BIC was given a higher

weight as BIC penalizes increased model parameters

more than AIC and is more likely to result in a

parsimonious model (Schwarz 1978). The candidate

control factors were selected from the initial total

stand basal area (BT), forest type indicators (F1, F2),

and physiographic variables (L, cos(a), sin(a), z), due

to their obvious impacts on the dynamics of Alaska

boreal forest (c.f. Liang 2010; Liang and Zhou 2010;

Stage and Salas 2007). A parametric empirical vari-

ogram model with the lowest AIC and BIC scores was

selected as the final model for each species group.

Projection and spatial inference

Underlying assumptions

The future maps of Alaska boreal forests were created

in this study based on two underlying assumptions—

unit homogeneity and intrinsic stationarity.

Unit homogeneity assumes that the mapping unit,

i.e. pixel in this study, has homogeneous species

composition and stocking. Technically this assump-

tion can be met by partitioning an area of study to

pixels of a size small enough to be homogeneous. In

this study, the Alaska boreal region was divided into a

grid of 2-km pixels because they represent the finest

1096 Landscape Ecol (2012) 27:1091–1108
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resolution of the Alaska land-cover map (ALM, Rupp

2008) available for identification of initial vegetation

type in the region.

Intrinsic stationarity assumes forest stocking is a

spatial process with a spatially-dependent semivario-

gram and a constant mean that is subject to exogenous

factors. In other words, by assuming intrinsic sta-

tionarity, we subscribe to the view that stocking of a

forest stand could be determined to a certain confi-

dence level from the exogenous factors such as

physiographic attributes, and the conditions of its

neighboring stands, including their stocking levels and

geographic locations. This assumption could be vio-

lated by the spatio-temporal shifts of environmental

conditions such as climate change, and this was

thoughtfully discussed in §Model advantages and

limitations.

Initial attributes

The initial attributes of all the 2-km pixels—repre-

senting the starting conditions of the Alaska boreal

forest for the simulation—were composed of the

following six variables. Forest type indicators (F1, F2)

define the dominant species of each pixel. Initial stand

basal area B2001 represents forest stocking, and

physiographic variables L, a, and z stand for the slope,

aspect, and elevation of each pixel, respectively.

Forest type indicators (F1, F2) came from the ALM

raster data with a 2-km resolution (Rupp 2008) that is

re-categorized using the mean growing season tem-

perature and terrain information from the National

Land Cover Database (NLCD) 2001 Landsat remote

sensing data (http://www.mrlc.gov). There are five

land cover classes in ALM: 0 = non-vegetated (e.g.

water, rock, or ice), 1 = tundra, 2 = black spruce,

3 = white spruce, and 4 = deciduous trees (birch and

aspen) (Fig. 1). For each 2-km pixel, F1 = 1 if its

land-cover class is 4 and F1 = 0 otherwise; F2 = 1 if

its land-cover class is 2 or 3, and F2 = 0 otherwise.

The initial basal area throughout the region was

obtained with universal kriging from B2001(s)—the

observed basal area of the 446 sample plots in 2001

and control variables selected (see §Model estimation)

from forest type indicators, and physiographic vari-

ables L, cos(a), sin(a), and z. Physiographic variables

were directly obtained from the Digital Elevation

Model (DEM) of the U.S. Geological Survey EROS

Alaska Field Office (http://agdc.usgs.gov/).

Mapping of future stocking and diversity

Region-wide maps of forest stocking in 2100 were

developed with universal kriging (see §Model descrip-

tion) based on B2100(s)—the basal area of the 446

sample plots in 2100 projected by the dynamics

module, and control variables selected (see §Model

estimation) from forest type indicators and physio-

graphic variables. Predicted basal area of all the pixels

throughout the region, B2100(s0), was then aggregated

to map future forest stocking (Fig. 2, 8). A 100-year

projection horizon was used in this study because with

the slow growth rates of all the major species, a period

of 100 years is a common cutting cycle for the

management of Alaska boreal forest (Liang 2010).

Diversity of location s, a joint entropy of species

richness and evenness was measured with Shannon’s

index (Shannon 1948), which is generally regarded as

a premier measure of ecological diversity (Gorelick

2006; Liang et al. 2007):

HðsÞ ¼ �100�
X2

i¼1

BiðsÞ
BðsÞ ln

BiðsÞ
BðsÞ

� �
ð12Þ

where Bi(s) and B(s) were the basal area of species i,

and total stand basal area at location s, respectively.

Diversity would reach its maximum Hmax = 100 *

ln(2) = 69.3 for a mixed species stand where conifer-

ous and deciduous species are of the same total basal

area. Diversity would reach its minimum Hmin = 0

when a stand is pure coniferous or deciduous.

Model validation

The most straightforward way to validate the model

would be to compare the predicted species distribution

and forest stocking of year 2100 with observed ones.

Since this is impossible, two alternatives were pro-

vided to validate this geospatial model in terms of

climax states and vegetation, respectively.

Climax states validation assessed if the steady

states reached through long-term simulations could be

ecologically sound. For this validation, 10 stands were

randomly selected from the Alaska boreal forest

region D with similar physiographic conditions

(Fig. 1), and their predicted population structures over

300 years were compared to the expected forest

succession patterns. The stands, approximately

240 m in elevation, 2 % in slope, and around 308 in
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aspect, differed greatly in initial stand states. Since

climax states are sensitive to physiographic conditions

but independent from initial states (e.g. Liang et al.

2005), similar predicted climax states should be

expected over these 10 validation stands if the model

is reliable.

Projected vegetation was descriptively examined

by comparing the projected 2007 map of dominant

species to the observed 2007 map of vegetation of

Bonanza Creek, Alaska (64.76 N 148.28W, WGS84).

The observed vegetation map, which comes from the

reconstructed Color-infrared QuickBird imagery

acquired on August 9, 2007 and June 18, 2007 and

field measurements (Baird 2011), is done at the

1:12,500 scale using ArcGIS. The projected map

was made by running the geospatial model on each

30-m pixel to determine the total basal area by species

in 2007, and the species with the highest projected

basal area was considered dominant for that pixel. An

error matrix (Congalton 1991) was made to evaluate

the accuracy of the predicted species distribution over

93,564 pixels of the entire area. The error matrix

summarizes the number of pixels predicted to be in a

particular species category relative to the actual

observed number of pixels in that species category.

Three measures of accuracy were presented here—

Producer’s accuracy represents the probability of a

reference pixel being correctly classified by the model;

User’s accuracy indicates the probability that a pixel

classified on the map actually matches that category on

the ground (Congalton 1991); and overall accuracy

was computed by dividing the total correct pixels (the

sum of the major diagonal) by the total number of

pixels.

Results

Model estimation and validation

The empirical variance of initial stocking displayed an

obvious pattern of spatial autocorrelation (Fig. 3, dots

and envelopes), for which a spherical variogram

model was calibrated with Cressie’s robust method

(Fig. 3, solid line). All the parameters, including

nugget, sill, and range were highly significant. Supe-

rior to the non-spatial estimates based on the same

control variables, this map of initial stocking esti-

mated by the geospatial model marked lower AIC and

BIC scores (Fig. 3).

In order to find appropriate control variables to map

future basal area, four candidate models, from the full

model with all the potential control factors to the

reduced model with no control factor (Table 3,

Models #1 through 4) were investigated. According

to Table 3, the model with B, F1, F2 had the least BIC

scores consistently over all, deciduous, and coniferous

species. Therefore, B, F1, F2 were selected as the

control variables of the geospatial model.

The empirical variance of stand basal area of year

2100 predicted by the dynamics module displayed

significant spatial autocorrelation over all, deciduous,

and coniferous species (Fig. 4a–c, dots and enve-

lopes). A spherical variogram model calibrated for

Fig. 3 Empirical

semivariogram plot for the

model to simulate initial

basal area across the Alaska

boreal region. Dot size was

in proportion to the sample

size in that range. Empirical

semivariograms were

calibrated with initial stand

basal area from the 446

permanent sample plots

using a spherical model and

Cressie’s robust method
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each species (Fig. 4a–c, solid line) featured lower AIC

and BIC scores than non-spatial models (Tables 3, 4),

which indicated the geospatial model was more

accurate than the non-spatial models.

The geospatial model passed the climax state

validation. Despite the wide range of initial stand

states, the predicted basal areas of the 10 validation

stands were able to finally converge to a typical late-

seral state, in which the climax coniferous species

accounted for approximately 90% of the total stand

basal area (Fig. 5). As expected, the standard devia-

tion of the 10 stands gradually declined with time as

various stands converged to a single steady state. The

predicted total stand basal area of the steady-state

(14 m2 ha-1) resembled the typical stocking of a late-

seral boreal forest in Alaska, suggesting the geospatial

model was reliable for long-term applications.

The projected vegetation of Bonanza Creek in 2007

largely matched the observed map (Fig. 6). The error

matrix (Table 5) shows that for a total of 93,564 30-m

pixels in the area, 41,221 out of 50,869 deciduous

pixels and 39,454 out of 42,695 coniferous pixels were

correctly categorized by the model, respectively. Both

Producer’s and User’s accuracy were greater than

80 % for all the species, and the overall accuracy was

86 %. As a potential reason for the difference between

the predicted and observed species distribution, a pixel

was defined deciduous or coniferous in this study if the

basal area of that species category exceeds 50 percent

of total basal area, whereas Baird (2011) determines

the vegetation type of a pixel with field data and

remotely sensed normalized difference vegetation

index (NDVI) instead of basal area.

Maps of current and future stocking

Based on the foregoing model and observed stand

basal area of the 446 permanent sample plots, initial

basal area, i.e. total stand basal area of 2001, was

mapped throughout the entire Alaska boreal region.

The mean basal area was ranged from 6.07 to

32.23 m2 ha-1, with the highest basal area concen-

trated in three areas in the Tanana Flats near

Fairbanks, the Copper River Valley surrounding

Glennallen, and the Matanuska-Susitna Valley to the

west of Wasilla, respectively. Some of the lowest basal

area was estimated to be located at west Copper River

Valley and west Kenai Peninsula (Fig. 7a). The

standard deviation was expectedly at its lowest

(8.97 m2 ha-1) on and near the 446 permanent sample

plots. As the location became further apart from the

Table 3 Performance of candidate GSM models

Model (species) Spatial Non spatial

Covariates LL AIC BIC LL AIC BIC

Deciduous species

1 B, z, cos(a), sin(a), L, F1, F2 -1608 3236 3277 -1653 3323 3360

2* B, F1, F2 -1612 3237 3261 -1664 3339 3359

3 B -1746 3499 3515 -1732 3470 3483

4 – -1821 3649 3661 -1777 3557 3565

Coniferous species

1 B, z, cos(a), sin(a), L, F1, F2 -1521 3062 3103 -1562 3142 3179

2* B, F1, F2 -1531 3075 3099 -1576 3161 3182

3 B -1763 3535 3551 -1701 3409 3421

4 – -1809 3624 3636 -1720 3443 3452

All species

1 B, z, cos(a), sin(a), L, F1, F2 -1628 3276 3317 -1694 3407 3444

2.* B, F1, F2 -1636 3284 3309 -1720 3451 3471

3 B -1705 3418 3435 -1751 3508 3520

4 – -1711 3427 3440 -1759 3521 3530

LL log-likelihood

* Indicates the selected model based on AIC and BIC values
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sample plots, the standard deviation increased and

peaked at 11.29 in the remote western Alaska

(Fig. 7b).

According to the geospatial model projection, most

of the basal area in 2100 was comprised of coniferous

species, with higher basal area in the Tanana Flats

south of Fairbanks, the Porcupine River Basin south of

Fort Yukon, the Yukon Flats from Tanana to Nulato,

and sporadic areas in the Copper River Basin near

Glennallen. Low basal area was predicted for eastern

Matanuska-Susitna Valley near Wasilla (Fig. 8a, c, e).

More confidence could be placed on or near the

Fig. 4 GSM empirical semivariogram of basal area with the dot

size in proportion to the sample size in that range. Empirical

semivariograms were calibrated with data from the 446

permanent sample plots using a spherical model and Cressie’s

robust method for all (a), deciduous (b), and coniferous species

(c)

Table 4 Estimated GSM parameters by species group with selected covariates

Model Covariates Nugget Sill Range (103 m) WSS (106)

Const. B F1 F2

Deciduous 0.23 0.41 9.14 -5.21 43.78 38.71 73.75 3.23

(AIC, BIC) (3237, 3261)

(AICnon-spatial, BICnon-spatial) (3339, 3359)

Coniferous 37.71 -0.20 -24.67 -15.12 37.29 26.26 127.93 1.68

(AIC, BIC) (3075, 3099)

(AICnon-spatial, BICnon-spatial) (3161, 3182)

All species 37.84 0.21 -15.26 -20.58 73.42 57.22 98.61 5.90

(AIC, BIC) (3284, 3309)

(AICnon-spatial, BICnon-spatial) (3451, 3471)

WSS weighted sum of squares value
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permanent sample plots where the standard deviation

of predicted mean was lower than other areas (Fig. 8b,

d, f).

Discussion

Forest states are not necessarily stationary or even

continuous. However, this study shows that when the

factors causing the spatial non-stationarity have been

accounted for, forest states could become a stationary

process. Intrinsic stationarity as a major modeling and

mapping assumption implies that future forest states

over the region may be a conceivable and spatially

stationary process when exogenous factors have been

controlled for. To this end, the essential questions are:

are future forest states over the region conceivable, i.e.

predictable, and is this process spatially stationary?

The first question was addressed by model validation

(§Model validation). Future forest states were shown to

be predictable as the post-sample projection of Bonanza

Creek largely matched the observed map (Fig. 6) with

an 86 % overall accuracy. The second question was

addressed in §Model estimation and validation. The

empirical variance of forest states displayed an obvious

pattern of spatial autocorrelation (Figs. 3, 4), for which
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spherical variogram models (Figs. 3, 4) were highly

significant with better goodness-of-fit. When exogenous

factors and the semivariogram are simultaneously taken

into account, the projected maps of future forest states

(Figs. 8, 9) are clearly patchy and discontinuous,

resembling expected natural patterns.

Ecological implications

The geographic distribution (Fig. 9a) of basal area

change from 2001 to 2100 indicated that moisture

limitation may have a major effect on the stocking of

the Alaska boreal forest. Most of the areas with

positive basal area change were estimated to locate

along the three major regional rivers—the Copper

River, the Tanana River, and the Yukon River passing

through Glennallen, Fairbanks, and Fort Yukon,

respectively. The higher basal area increment rate of

these areas, presumably due to a combination of

natural through fall and capillary rise of soil water

Fig. 6 Comparison between observed (left) and GSM predicted

(right) vegetation map of Bonanza Creek in 2007. Observed

species distribution comes from the reconstructed Color-

infrared QuickBird imagery (Baird 2011). Inset pinpoints the

relative location of Bonanza Creek in Alaska

Table 5 Error matrix for the comparison between observed

and predicted species distribution maps (Fig. 6)

Deciduous

obs.

Conifer

obs.

Predicted

total

User’s

accuracy

Deciduous pred. 41,221 3,241 44,462 93 %

Conifer pred. 9,648 39,454 49,102 80 %

Observed total 50,869 42,695 93,564

Producer’s

accuracy

81 % 92 %

This table summarizes the number of pixels predicted to be in a

particular species category (rows) relative to the actual

observed number of pixels in that species category (columns)
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associated with the proximity of rivers, agreed with a

recent finding that both deciduous and coniferous

species displayed higher growth rates on floodplain

than in upland control sites (Yarie 2008). Addition-

ally, moisture-abundant lowland forests could have a

higher stocking increment rate than dryer areas where

drought-related disturbance agents, such as spruce

bark beetle (Wermelinger 2004) and wildland fires

(Johnstone et al. 2010) may further reduce basal area

increment rates.

Another interesting observation was that the four

major areas of negative stocking increment were

located near major urban developments (Fig. 9a). I

hypothesized that inappropriate human interference

could impose a negative impact on stocking increment

rate of the Alaska boreal forest. More specifically, the

largest area of negative basal area change located in

the east Matanuska-Susitna Valley near Wasilla and

Anchorage—the two largest cities of Alaska—was

likely caused by extensive historical removal of pole-

sized coniferous trees in the area (Department of

Community Development 2008). With this inappro-

priate high-grading practice, the residual stands,

dominated by over-mature deciduous species, were

destined to decline in basal area until coniferous

species become predominant. The other areas of

negative stocking increment, also located near major

urban developments of Fairbanks, Delta Junction, and

Glennallen, could also be related to inappropriate

harvesting.

Management implications

The geospatial model digital map database was

currently composed of estimated stand basal area by

species at year 2100 throughout the Alaska boreal

Fig. 7 Estimated basal area (m2 ha-1) distribution at year 2001 across the Alaska boreal forest region. Spatial estimation was

performed using universal kriging (UK) with the sample basal area and DEM topographic (i.e. elevation, slope, and aspect) data
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forest region. The region was divided into 322,255

2-km pixels, and the estimated attribute values of these

pixels at 2100 were stored in a single matrix (Table 6)

and were further converted into a GIS layer repre-

senting forest stocking at 2100. The size of this matrix

could be easily extended to accommodate the expan-

sion of geographic coverage or additional attributes.

Future temporal extension of the database, however,

needs to be placed into separate matrices with each

matrix representing a different future point in time,

which would be more costly in terms of processing

time and storage space than a geographic extension.

The digital map database created from this model

has a high potential in facilitating forest management,

especially at a large-scale. Stand-specific data of

current and future species distribution and stocking,

ready to be retrieved with stand coordinates, could

assist the development of spatial-specific management

regimes and greatly reduce the time and cost in

decision-making. For instance, stands at 64.17�N

145.85�W (WGS84) were expected with increasing

stocking under natural succession, but stands at

59.73�N 155.10�W may need a considerable thinning,

as they were predominately coniferous, highly flam-

mable, and were expected to lose stocking over time

(Table 6).

Caution is advised for applying the present model to

forest management. The issues are twofold. First, the

present model was only able to project future stocking,

species, and diversity, but the detailed stand attributes,

such as diameter distribution and timber quality have

being overlooked. Secondly, with the low confidence

level for a majority of the region (Fig. 8b, d, f), the

present model may only provide a vague guideline for

most remote areas until future inventories will be

expanded to cover the entire region.

Fig. 8 GSM projected mean basal area (m2 ha-1) of all (a), deciduous (c), and coniferous species (e), with estimated standard

deviation (m2 ha-1, b, d, f) across the Alaska boreal forest region at year 2100
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Model advantages and limitations

The geospatial model was of two major advantages

over previous studies. First, the geospatial model

enabled spatially explicit prediction of forest dynam-

ics, greatly facilitating forest management projects at

various scales, as spatial-specific forest population

structures at stand, landscape, and regional levels

could be instantly retrieved from the geospatial model

digital map database.

As another major advantage, the geospatial model

accounted for both regional trend and spatial autocor-

relation. Previous spatial studies typically focus on

either trend surface (e.g. Gittins 1968; Kuuluvainen

and Sprugel 1996; Liang and Zhou 2010) or autocor-

relation (e.g. Bolstad et al. 1998; Pfeffer et al. 2003;

Miller 2005). Trend surface studies overlook spatial

autocorrelation, whereas autocorrelation studies often

have to assume constant trend (geostatistical interpo-

lation models, autoregressive models, or geographi-

cally weighted regression models) or a trend local to

each pixel (universal kriging). The geospatial model

features an approach to incorporate the controlled

trend surface into the geostatistical model of universal

kriging. This approach maintained the accurate

regional trend surface estimates (Liang and Zhou

2010), and mitigated the seemingly artificial patterns

from the trend surface estimation (see Liang and Zhou

2010, pp. 2351).

The assumption of intrinsic stationarity could be

violated by the shifts of environmental conditions such

as climate change. This issue is admittedly difficult to

address, as environmental conditions vary across both

space and time, and it is a challenging task to account

for temporal and spatial changes of climatic conditions

across the region simultaneously. Although climate-

Fig. 9 GSM projected 100-year basal area change (m2 ha-1, a) and species diversity at year 2100 (b) across the Alaska boreal forest

region
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sensitive models of forest dynamics (e.g. Yan and

Shugart 2005; Scheiter and Higgins 2009; Liang et al.

2011) could project future states of the sample points

under climate change, it would be too risky to assume

spatial stationarity across the region in future years, as

geographic distribution of climatic conditions is

known to change over time (c.f. IPCC 2001). There-

fore, the present model should only be used as a

baseline tool for the estimation of future forest

dynamics. To this end, future studies could benefit

from a spatio-temporal modeling framework that

could simultaneously account for the temporal and

spatial gradients in forest dynamics under the influ-

ence of climate change.

The present geospatial model was developed only

to help approximate forest stocking for the locations

with very limited data, and it is by no means meant to

replace forest dynamics models in providing accurate

estimation of forest stocking. The results were of less

confidence as the study area distanced from the

sampled area. This major limitation was reflected in

Figs. 7 and 8 which show increased standard deviation

of predicted means in remote areas. With the confi-

dence level being quite low for a majority of areas in

Alaska boreal region (Fig. 8b, d, f), the results from

the current study should be used cautiously outside the

sample areas. Nevertheless, the present model should

be useful because not only does it provide projections

to cover a region where most areas are of no data, it

also presents the geographic distribution of confidence

levels for the projection.

Conclusion

This paper presents a geospatial model, which

accounted for both regional trend and spatial autocor-

relation, to estimate dynamics of the Alaska boreal

forest from existing forest inventory data in limited

areas across the region. The spatially explicit esti-

mates were aggregated into a digital map database to

facilitate forest management at both micro and macro

levels. The geospatial model accounted for both

regional trend and spatial autocorrelation by incorpo-

rating the controlled trend surface into the geostatis-

tical model of universal kriging. Not only did this

approach maintain the accurate regional trend surface

estimates, it also mitigated the seemingly artificial

patterns of the trend surfaces by controlling for spatial

autocorrelation. The accuracy and reliability of this

Table 6 Sample data sections of the GSM digital map database

Pixel Coordinates Bdeciduous Bconiferous

Mean Std Mean Std

80 (-141.18, 68.60) 18.0275 9.0905 8.8456 8.2413

81 (-141.17, 68.60) 18.0275 9.0905 8.9509 8.2413

120 (-141.05, 68.56) 2.8105 9.0920 19.7199 8.2422

121 (-141.04, 68.56) 2.8105 9.0920 20.0484 8.2422

… … … …
178334 (-145.86, 64.17) 2.6158 7.4235 38.9369 6.6862

178335 (-145.85, 64.17) 2.6518 7.4097 38.6419 6.6842

178336 (-145.83, 64.17) 2.6786 7.4125 38.7153 6.6864

… … … …
211310 (-143.24, 63.35) 6.2072 7.4062 24.3193 6.5826

211311 (-143.22, 63.35) 6.0426 7.3772 24.6387 6.5695

211312 (-143.20, 63.35) 5.8415 7.3540 24.8751 6.5584

… … … …
322253 (-155.13, 59.73) 18.0275 9.0905 11.4574 8.2413

322254 (-155.12, 59.73) 18.0275 9.0905 11.4574 8.2413

322255 (-155.10, 59.73) 2.8105 9.0920 22.6265 8.2422

The basic database consisted of simulated future stocking of 322,255 2-km pixels of Alaska at year 2100, and can be further extended

in space and time. Coordinates were in WGS84 Geodetic System
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model were verified with two information criteria and

an evaluation of long-term predictions and projected

vegetation map. Precision of the projections (in terms

of standard deviation) is admittedly low for the never

inventoried areas in comparison to those with inven-

tory data (Figs. 7, 8). However, for the majority of the

region where little information is available, the results

could be of unprecedented value.

With areas of the best basal area increment rate

clustered along the major rivers and the worst ones near

the four major urban developments in Alaska, it was

hypothesized that moisture limitation and inappropri-

ate human interference were the main factors affecting

the stocking rates of the Alaska boreal forest. Forest

management in Alaska was suggested to employ

spatial-specific regimes to accommodate the geo-

graphic variation of forest dynamics. Despite limita-

tions commonly associated with empirical geospatial

models, the present model provided a useful baseline

tool for the study of forest dynamics and management.
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