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Dear Dr. Carsten Dormann and Colleagues, 

 

Thank you for your comments on Liang et al. 2016. It is always stimulating when someone is 

discussing our findings. There are many interesting questions you raise, and others neither you nor 

we have yet wrestled with fully.  Please find, below, our response to your comments as numbered 

on Page 1. 

 

(1) The authors computed “relative tree species richness” in such a way that it represents a 

gradient from boreal to tropical plots, rather than in local species richness. When instead 

computing species richness relative to the maximum value in the region the effect of species 

richness on productivity is dramatically reduced. 

 

Response: Thank you for your suggestion in your first sentence. However, confining our analysis 

strictly at the ecoregion level would render us unable to derive a true global biodiversity-

productivity relationship (BPR) which should account for both intra- and inter-ecoregion 

variability. There are likely a variety of different ways of assessing this; ours and yours are just 

two.  Considering mounting concerns on the delineation of ecoregion boundaries (e.g. Jepson and 

Whittaker 2002), an ecoregion-level study would create substantial problems of its own. Thus we 

believe both options (yours and ours) have strengths and weaknesses, and address the same overall 

question but from different angles. There are many other issues that could be, and should be 

addressed, in grappling with how best to do this. This includes whether productivity should be 

standardized (i.e. the issues raised for richness might also apply in some way for productivity); 

and how best to standardize either richness or productivity (as there a number of ways of doing 

this). We are working on delving further into these issues. 

 

Regarding the point in the second sentence, we disagree that the BPR relationship is dramatically 

reduced when examined at eco-regional scales. We will demonstrate below that even when we use 

relative tree species richness at an ecoregion-level, the trendline and standard error bands are 

similar to the global trend as reported by Liang et al. 2016. 

 

For this demonstration, we selected the three grassland biomes (i.e. Montane Grasslands and 

Shrublands, Flooded Grasslands and Savannas, and Temperate Grasslands, Savannas and 

Shrublands), because your graphs in Page 32 suggest that these biomes do not conform to the 

global trend of Liang et al. 2016. For this analysis, we combined the three biomes together, because 

there are less than 2000 plots for Montane Grasslands and Shrublands and Flooded Grasslands and 

Savannas together, and almost a half of the plots within these two ecoregions are monocultures 

 

The combined grassland biomes have a total of 23,133 plots (including ~3000 monoculture plots). 

For simplicity, we ignored the spatial autocorrelation, and the result from a robust bootstrapping 

estimation (Efron and Tibshirani, 1993) is quite consistent with the global trend of Liang et al. 

2016 (Fig. B1) (see the Appendix for the R script for estimating BPR for the grassland biomes).  

This is also generally true for most of the other ecoregions (not shown), as long as there are a 

sufficient number of plots and a sufficient number of mixed-species plots. In fact, the theta values 

we have produced to date across regions don’t systematically differ from the global one, although 

we are still working on making sure we are doing these appropriately. So we are unclear how you 

arrived at the values you did. Additionally, we also think that perhaps we (and you or anyone else 
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working with these data) should eventually re-run everything at a forest type-level, as ecoregion 

is a poor way to delineate forests. For instance, we have plots from the desert ecoregion with near 

zero productivity, which nonetheless are identified by local foresters as forests.   

 

 

We acknowledge that performing an ecoregion-level study would be a good supplement to Liang 

et al. 2016. We would be glad to collaborate with you or anyone else on this idea. Additionally we 

believe that examining alternative approaches, including non-parametric models, and different 

ways of standardizing either or both productivity and richness, to the global relationship would be 

worth doing. 

 

We also note that we have some residual questions about your approach. We are unable to 

understand how a global line like yours (your left panel, Figure 1) could average and max out 

around 2.5 for productivity when so many of the Ecoregions with most of the data have means so 

much higher than that?  Additionally, you call the x-axis of your first panel in Figure 1  ”relative 

local species richness” which confuses us. If your draws were across all data, then the ‘relative’ 

value is not ‘local’ even if you used the maximum values of each draw rather than the global max 

as we did (but we are not entirely sure what you did). If the maximum richness was from each 

draw, should your x-axis be “sample max” not “local max”. Are we misinterpreting what you did 

or is this just unclearly labeled?   

 
Figure B1. Estimated BPR curve (with 95% confidence interval bands), using an ordinary least squares (OLS) model, based on 

the three grassland biomes (i.e. Montane Grasslands and Shrublands, Flooded Grasslands and Savannas, and Temperate 

Grasslands, Savannas and Shrublands). We converted species richness (S) to relative species richness (S_hat): S_hat = S *100 / 

271.  
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(2) Plots are overwhelmingly from temperate forest; indeed only some 2500 plots are from the 

tropics (equivalent to 0.4%), despite these forests representing around 30% of the world’s forest. 

Stratifying the plots accordingly weakens the TSR-P-relationship. 

 

Response: Thanks for the concern raised in your first sentence. We are well aware of that problem, 

and have even discussed it in our paper. Of course this is just one more case of a general trend of 

under-documentation of all species (not just trees) from developing countries. This is problem all 

researchers from developed countries should at least be aware of and try to mend as best we can; 

we at the GFBi are doing our part and currently trying to collect more samples from the tropics for 

future research studies.   

 

Regarding your second point, we recognize that stratifying the plots may make the results more 

robust, but its effect would be limited and will not alter the overall global trend, because you 

already stated in your comments (Page 20) that “the (stratification) effect is moderate, with slightly 

lower values than the original non-stratified approach. This result suggests that also with non-

stratified sampling always some tropical plots with high species richness are drawn, making the 

original Š robust to unrepresentative sampling.”  

 

Additionally, because the data are overwhelmingly temperate, roughly 3% boreal, and <1% 

tropical, and draws in Liang et al 2016 were random across the globe, most of the 500-stand draws 

in our original 2016 paper were likely to have most data from non-tropical sites, so the influence 

of tropical high diversity, high productivity sites were likely modest, unless they had extremely 

high influence per datum on the overall fitted function because of their position in data space 

(which is possible). This is relevant to your concern (above) about our global result being 

influenced by the sharp gradient in boreal to tropical forests in both productivity and richness.  

Similarly, boreal stands would have shown up not very often; maybe 15 or so times on average in 

each 500 stand draw, with tropical stands drawn twice or so on average out of each 500 draw.  In 

contrast, if our data had hypothetically been roughly representative equally of boreal, temperate 

and tropical forests, the global relationship might have been much more influenced by the gradient 

from low diversity, low productivity boreal to high-high tropical. In other words, our original data 

and fits were likely strongly temperate in flavor, despite our concerns about the undue influence 

of the boreal-tropical gradient. It may be in fact that we should have a different concern; not that 

boreal-tropical gradient exerted too much influence on our published global fitted relationship of 

productivity-richness, but that our global analysis ‘undercounted’ the impact of tropical and boreal 

forests on the global relationship, given that the vast majority of stands in each 500-lot draw were 

temperate.  We are not yet sure how best to check these issues.    

 

 

(3) In the spatial regression model, distances between plots were computed without taking the 

spherical nature of earth into account. This had little effect on the slope estimate of the TSRP-

relationship. 

 

Response: Thank you for sharing your insight into and findings about this. We appreciate it. We 

recognize that calculating distances between plots by taking the spherical nature of earth into 
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account may slightly improve the accuracy of our estimated BPR. The magnitude of such 

improvement is yet to be determined by future research. 

 

 

(4) The computational burden of the spatial model required subsampling the data to 500 data 

points. The authors did not correctly compute confidence intervals for this approach, wrongly 

interpreting subsampling as bootstrapping and additionally incorrectly computing bootstrap 

standard errors. A correct subsampling-based estimation led to approximate trippling of the 

reported confidence interval. 

 

Response:  

 

Thank you for raising this concern. Bootstrapping is only efficient at depicting a global trend if 

the re-sampling size is close to the global sampling size (Efron and Tibshirani 1993). However, 

for our study, the 500-plot subsample is far from our global sampling size (>700,000). Considering 

that you used a minimalism approach, in which “while Liang et al. (2016) run 10000 bootstraps, 

we only do 50,” (p.8) your suggested global results only represent, in fact, ~ 50*500=25000 plots 

or approximately 3 percent of the global sample. In other words, there is a 97% information loss 

in your approach. 

 

In the textbook description of the bootstrapping by Efron and Tibshirani (1993), echoed by many 

(e.g. Hesterberg 2015), it is outlined that the bootstrap sample should be equal in size as the original 

sample, and that any smaller re-sampling sizes would lead to a biased estimate of standard error. 

This is also the main reason why you did not find a significant global BPR as it should have been.      

 

Allow us to demonstrate, with R-code (in blue) and outputs, how we have derived our results. 

While there is well-established literature regarding the validity of the subsampling method we have 

taken, less is known about an appropriate choice of the size of a subsample and the number of 

subsamples. With a global sample size over 600,000, we have chosen the subsample size to be 500 

and a total of 10,000 subsamples out of consideration for computational feasibility and adequate 

representation of the global sample. Our approach leading to these choices is indeed ad-hoc and 

the standard errors are at best approximations. We welcome ideas and possible collaboration to 

establish more rigorous approaches. On the other hand, with a large amount of data and thus 

information, statistical significance is not tenuous to attain. 

 

1. For each random subset of 500 plots, we consider this subset a separate study unit (one can 

regard this as equivalent to a subregion). In the Geospatial Random Forests model, we calibrate 

one biodiversity-productivity relationship (BPR) curve based on this subset. With a global 

sampling size of >700,000, we find that it takes more than 2,000 subsets of 500 samples in our 

global BPR analysis, so that any single plot would have been accounted for at least once in the 

analysis. To be safe, we used 10,000 subsets (i.e. iterations) (Fig. 1); 
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Figure 1. A graphic demonstration of the Geospatial random forests model. We randomly select 500 plots from across the world 

as one study unit or “subregion” (yellow), calibrate one biodiversity-productivity relationship (BPR) using the model, and draw a 

ceteris paribus BPR curve. Repeating this 10,000 times provide a sufficient global coverage as each plot has on average been 

covered for ~7 times (500*10000/720000≈7). Note that actual subregions can be spatially discontinuous depending on the 

randomization.  

A major strength of this approach is that it does not require any a priori assumption on the 

population distribution or any a priori delineation of forest type units across the world, within 

which forests have similar conditions. This is especially useful because there is no universally 

accepted forest type delineation across the world (FAO 2015). 

 

2. Load the global data set, note that we did remove plots with extreme species richness or 

productivity values (i.e. those beyond 99.996th percentile), and plots with zero species richness or 

productivity.  
 
# Load packages  
library(nlme) 
 
# Load plot-level data 
# Download GFB1_data_figshare.xlxs from Figshare and convert to a csv file 
 
data<- read.csv("GFB1_data_figshare.csv") 
data <- subset(data, P>0) 
data <- subset(data, S>0) 
 
quantile(data$S,0.99996) 
quantile(data$P,0.99996) 
 
data1 <- subset(data,data$S<=270 & data$P<=533 & data$S >0 & data$P>0)   # removed 894 
plots with 0 or extreme S and P values 
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3. For each subset of 500 plots (without replacement), we consider this subset a separate study unit 

(one can regard this as equivalent to a subregion). We draw one BPR curve based on this subset, 

using our geospatial random forests, by keeping other variables constant at their sample mean, 

only increasing species richness from 1 to 271 (the global maximum).  

 
################################################################### 
################### Derive Global GeoRF Estimation ##################### 
################################################################### 
logP <- log(data1$P) 
# jig coordinates to avoid duplicated values 
Lon1 <- data1$Lon+ runif(length(data1$Lon),-0.0001,0.0001) 
Lat1 <- data1$Lat+ runif(length(data1$Lat),-0.0001,0.0001) 
data1 <- cbind.data.frame(data1, logP, Lat1, Lon1) 
############ Loop ################## 
coef <- matrix(0, nrow=10000, ncol=20) # Coef Matrix  
 
for(i in 1: 10000) { 
  tryCatch({ 
 training <- data1[sample(1:nrow(data1), 500, replace=FALSE),]   # turn 'replace' off to maximize 
inclusion of new plots 
 logS <- log(training$S) 
 training <- cbind.data.frame(training, logS) 
 gls1 <- gls(logP~ logS + G + T3 + C1 + C3 + PET + IAA + E, data=training, method="ML", corr= 
corSpher(form = ~ Lon1 + Lat1, nugget = TRUE), control=glsControl(singular.ok=TRUE)) 
 coef[i,3] <- i 
 coef[i,4] <- logLik (gls1) 
 coef[i,5] <- AIC (gls1) 
 coef[i,6]<- BIC (gls1) 
  #Generalized coefficient of determination 
  gls0 <- gls(logP~ 1, data=training, method="ML")   
  R2   <- 1-exp(logLik(gls0)-logLik(gls1))^(2/500) 
  coef[i,7]<- R2 
 coef[i,8]  <- coef(gls1)[1]    
 coef[i,9]  <- coef(gls1)[2] 
 coef[i,10] <- coef(gls1)[3] 
 coef[i,11] <- coef(gls1)[4] 
 coef[i,12] <- coef(gls1)[5] 
 coef[i,13] <- coef(gls1)[6] 
 coef[i,14] <- coef(gls1)[7] 
 coef[i,15] <- coef(gls1)[8] 
 coef[i,16] <- coef(gls1)[9] 
 coef[i,17] <- 0 
 # Baseline (S=1) productivity 
 # logS + B1 + T3 + C1 + C3 + PET + IAA + E 
 newdata <- data.frame(logS=0, G=mean(training$G), T3=mean(training$T3), 
C1=mean(training$C1), C3=mean(training$C3),PET=mean(training$PET), IAA=mean(training$IAA), 
E=mean(training$E)) 
 coef[i,20]  <- exp(predict(gls1,newdata)) 
 #counter 
 cat(i, " of ", 1000, date(),"Theta=",coef(gls1)[2], "R2=", R2, "\n" ) 
 #remove files 
 rm(training, newdata, gls1, R2) 
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  }, error=function(e){}) 
 } 
coef_df <- as.data.frame(coef) 
 
names(coef_df) <- c("0", "0", "i", "Loglik", "AIC", "BIC", "R2","const","theta", "B", "T3", "C1", "C3", "PET", 
"IAA", "E", "0", "0", "0", "P_1") 
 
write.csv(coef_df, "global_estimates.csv") 

 

 

4. Repeating the foregoing step 10,000 times, we get a combined subregions that cover the entire 

global forest range. Meanwhile, we have 10,000 curves (green in the following Fig. 2) that 

represent possible BPR’s across the world. Treating each region as an independent study unit, 

instead of a bootstrapping re-sample, we can calculate and plot the mean and standard error (SE) 

of the predicted BPR curves across the world as shown in the figure below (mean: black line, with 

red curves representing 95% C.I.)  

 
#################################################################### 
#### Draw estimated Biodiversity-Productivity Relationship (BPR) curves ######### 
#################################################################### 
 
data<- read.csv("global_estimates.csv") 
 
theta <- data$theta 
mean(theta) 
P_base <- mean(data$P_1) 
 
# Predict P over an increased S from 1 to global max (271), which corresponds to S_hat from 100/271 to 
100 
S     <- seq(1,271,1) 
S_hat <- S*100/271 
 
P_est <- data.frame(matrix(0, 10000, ncol =273)) 
P_est[,1] <- P_base 
P_est[,2] <- theta 
 
for (i in 1:10000){ 
  P_est[i,3:273] <- P_est[i,1] * S ^ P_est[i,2] 
  } 
 
# demosntration plot only shows the first 18 iterations 
plot(S_hat,colMeans(P_est[,3:273]), ylim=c(0,20), type="l",col = "blue", ylab="P") 
for (i in 1:18){ 
  P_est[i,3:273] <- P_est[i,1] * S ^ P_est[i,2] 
  lines(S_hat,P_est[i,3:273],col = "green") 
} 
# Confidence intervals 
lines(S_hat,colMeans(P_est[,3:273])+1.96*apply(P_est[,3:273], 2, sd)/sqrt(10000), ylim=c(0,20), 
type="l",col = "red") 
lines(S_hat,colMeans(P_est[,3:273])-1.96*apply(P_est[,3:273], 2, sd)/sqrt(10000), ylim=c(0,20), 
type="l",col = "red") 
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Figure 2. Sample BPR curves from the 10,000 estimated curves from across the world. The figure is nearly identical to Fig. 3A of 

Liang et al. 2016, with some minor differences due to the random process. For easy comparison across the world, we set the base 

value of P as 2.5m3ha-1yr-1, and convert species richness (S) to relative species richness (S_hat): S_hat = S *100 / 271. 

 

5. To demonstrate that this estimated global mean and confidence interval from our Geospatial 

random forests model (Fig. 2) is a good proxy of the true global BPR trend, we compare this result 

with an outcome from an ordinary least squares model (OLS), of which the estimates are  based 

on the entire sample (with >700,000 plots). 

 
## A comparison with OLS model  ## 

data   <- read.csv("GFB1_data_figshare.csv") 
data1 <- subset(data,data$S<=270 & data$P<=533 & data$S >0 & data$P>0)   # removed 894 

 
logS <- log(data1$S) 
ols1 <- lm(logP~ logS + G + T3 + C1 + C3 + PET + IAA + E, data=data1) 
 
theta <- coef(ols1)[2] 
summary(ols1) 
se_theta <- 2.100e-03 
 
S     <- seq(1,271,1) 
S_hat <- S*100/271 
P_base <- 2.5 
 
P_est_ols <- P_base * S ^ theta                       # mean predicted BPR 
P_est_ols_ub <- P_base * S ^ (theta+1.96* se_theta)   # upper bound of 95% CI 
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P_est_ols_lb <- P_base * S ^ (theta-1.96* se_theta)   # lower bound of 95% CI 
 
plot(S_hat, P_est_ols, ylim=c(0,20), type="l",col = "blue", ylab="P") 
# Confidence intervals 
lines(S_hat,P_est_ols_ub, ylim=c(0,20), type="l",col = "red") 
lines(S_hat,P_est_ols_lb , ylim=c(0,20), type="l",col = "red") 

 

The corresponding line plot is printed below. According to this graph, the BPR has the same 

curvature, but estimated productivity (P) is in general 10-20% lower than the estimated values 

from the Geospatial random forests, presumably due to the fact that spatial autocorrelation is not 

accounted for in the OLS model. Nevertheless, the confidence interval from the OLS model 

generally matches the confidence interval from the Geospatial random forests (Fig. 2).  

 

Figure 3 Estimated BPR curve (with 95% confidence interval bands), using an ordinary least squares (OLS) model, based on the 

entire GFB sample with >700,000 plots. For easy comparison across the world, we set the base value of P as 2.5m3ha-1yr-1, and 

convert species richness (S) to relative species richness (S_hat): S_hat = S *100 / 271.  
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(5) As noted earlier (Schulze et al., 2018), some 4% of the plots had productivity values (far) 

beyond what is biologically plausible (Stape et al., 2010). The likely reason is that small plots 

with large inventory errors in the productivity may lead to erratically high values. Not taking 

this into account in the analysis, e.g. by down-weighting plots with productivities above 30 

m2ha1y1 at least indicates an unre-ected use of data. 

 

Response:  

Thank you for your concern. As shown in the R-code above, we have removed extremely high 

productivity values, above the top 0.004 percent quantile (P<=533). It is admittedly a difficult 

task to filter out the potentially biased values from such a large sample, but we are working with 

data scientists and data contributors to further improve the accuracy of our data.  
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Appendix: R script for estimating BPR for the grassland biomes 
 
# Estimate BPR curves by ecoregion 
# (C) Jingjing Liang 2018 
 
library(nlme) 
 
# Load plot-level data 
# Download GFB1_data_figshare.xlxs from Figshare and convert to a csv file 
 
data<- read.csv("GFB1_data_figshare.csv") 
data <- subset(data, P>0) 
data <- subset(data, S>0) 
attach(data) 
 
 
## Montane Grass and shrubs ## 
 
data1 <- subset(data, data$Ecoregion==10 | data$ Ecoregion ==9 | data$Ecoregion ==8) 
data1 <- subset(data1,data1$P<=quantile(data1$P,0.999)) 
 
 
############## BPR Estimation ##################### 
 
############ Bootstrapping ################## 
coef <- matrix(0, nrow=50, ncol=101) # Coef Matrix  
 
 
for(i in 1: 50) { 
  tryCatch({ 
 
 training <- data1[sample(1:nrow(data1), 23133, replace=TRUE),] 
 logP <- log(training$P) 
  
 Lat1 <- training$Lat + rnorm(length(training$Lat)) 
 Lon1 <- training$Lon + rnorm(length(training$Lon)) 
 training <- cbind(training, logP, Lat1, Lon1) 
  
 S_max <- max(training$S) 
 SR <- training$S/S_max*100 
  
 logS <- log(SR) 
 training <- cbind(training, logS) 
 
 lm1 <- lm(logP~ logS + G + T3 + C1 + C3 + PET + IAA + E, data=training) 
 
 # Derive ceteris paribus BPR curve 
 newdata <- data.frame(logS=log(seq(1,100,1)), 
G=mean(training$G),T3=mean(training$T3), C1=mean(training$C1), 
C3=mean(training$C3),PET=mean(training$PET), IAA=mean(training$IAA), 
E=mean(training$E)) 
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 coef[i,1]  <-coef(lm1)[2]               #theta 
 coef[i,2:101]   <- exp(predict(lm1,newdata)) 
  plot(coef[i,]) 
 #counter 
 cat(i, " of ", 50, date(), "\n" ) 
 
 #remove files 
 rm(training, newdata, gls1) 
 
  }, error=function(e){}) 
 } 
 
coef_df <- as.data.frame(coef) 
 
write.csv(coef_df, "Ecoregion_Grasslands_BPR.csv") 
 
# Plot mean and 95% CI of bootstrapping 
plot(seq(1,100,1),colMeans(coef_df[,2:101]), ylim=c(0,6), type="l",col = "blue", 
ylab="P",xlab="S_relative") 
# Confidence interval 
lines(seq(1,100,1),colMeans(coef_df[,2:101])+1.96*apply(coef_df[,2:101], 2, sd), ylim=c(5,8), 
type="l",col = "red") 
lines(seq(1,100,1),colMeans(coef_df[,2:101])-1.96*apply(coef_df[,2:101], 2, sd), ylim=c(5,8), 
type="l",col = "red") 
 
 
# End of the code 


