

Do improved drying and storage practices reduce aflatoxin contamination in stored maize? Experimental evidence from smallholders in southern Senegal

Stacy Prieto¹, Jonathan Bauchet², and Jacob Ricker-Gilbert¹ Purdue University

Presentation for the World Mycotoxin Forum, Belfast, UK. 14-16 October 2019

¹Dept. of Agricultural Economics, Purdue University ²Dept. of Consumer Science, Purdue University FtF Innovation lab for food processing and post harvest handling (FPIL)

IMPORTANT TO RECOGNIZE THAT FOOD "QUALITY" CAN BE OBSERVABLE OR UNOBSERVABLE

- <u>Example</u>: Aflatoxin is a big problem in maize and other crops.
- Potent toxin produced by several species of fungi (notably Aspergillus flavus).
- Estimated 4.5 Billion people in developing world are exposed to aflatoxins (Williams et al. 2004).

- Lemons market: quality not observable no available way to test. No incentive to grow, preserve, and sell quality.
- Could inhibit market participation (Hoffmann and Gatobu 2014).

Prevention of aflatoxin contamination post-harvest

- Knowledge to increase awareness
- Proper drying
 - Off ground
 - Quickly
 - Until maize moisture content < 13.5%
- Proper storing
 - Airtight container

EVALUATING COST-EFFECTIVE INTERVENTIONS TO REDUCE AFLATOXINS IN STORED MAIZE IN SENEGAL

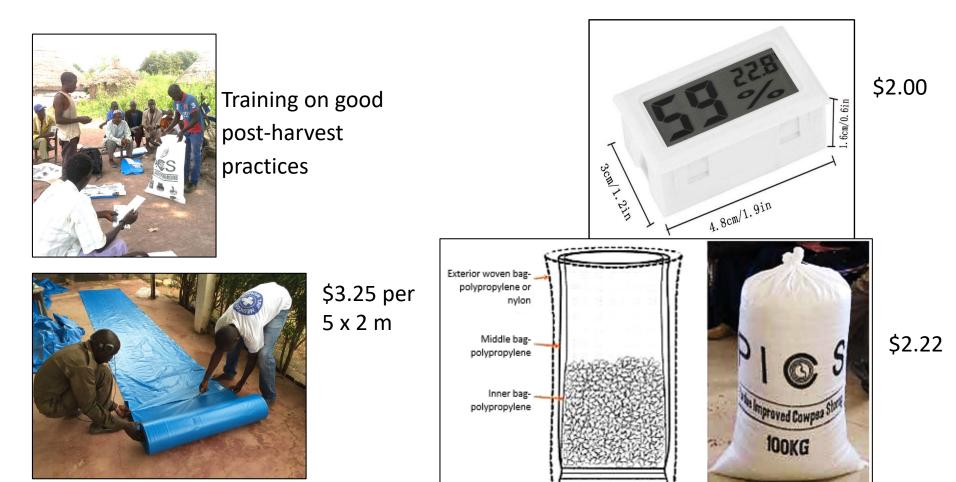
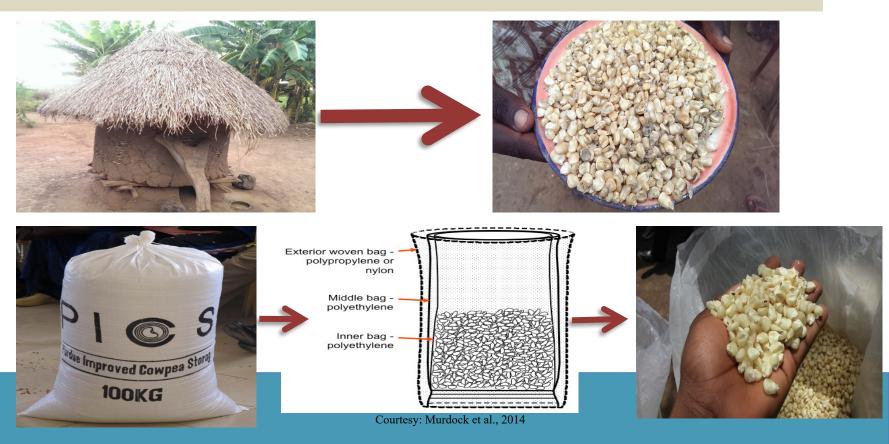

- HACCP Analysis revealed problem occurring from harvest to storage
- 26 of 88 maize samples (30%) taken randomly from postharvest cobs or shelled corn contained aflatoxin >20 ppb (Woloshuk, et al. 2016)
- Many people drying maize on the ground (25%)
- Little awareness of aflatoxin (29%).

Photo 1. A practice the project seeks to improve – ground drying increases aflatoxin contamination. Photo courtesy of Stacy Prieto



WHAT SHOULD FARMERS DO TO PREVENT AFLATOXIN CONTAMINATION?

Technology Intervention: Traditional. Vs Improved

Intervention

Use Cluster Randomized Control Trial (RCT) to see which combo of training/technologies is most efficient

Treatment Groups

		No. of	
	No. of Villages	Households	
1. Control	41	382	
2. Receives training only	41	394	
3. Receives training + hygrometer	42	398	
4. Training + hygrometer + tarp	42	410	
5. Training + hygrometer + tarp + PICS	43	409	
Total	209	1,993	

- 1,580 samples analyzed for aflatoxin using VICAM reader.
- Treatment at village level: Everyone in village invited, 10 HH per village given technologies and followed
- Training and intervention before harvest in October 2016
- Follow up in Feb 2017, May 2017 (+ April 2019 for long-term impacts; no results yet)

CONTRIBUTION

- Adds to sparse literature with randomized intervention to potentially reduce aflatoxin in stored grain among smallholder farmers.
- Focus on major staple food crop (maize)
- Links drying and storage training and technology
- Cost-effectiveness analysis on interventions.

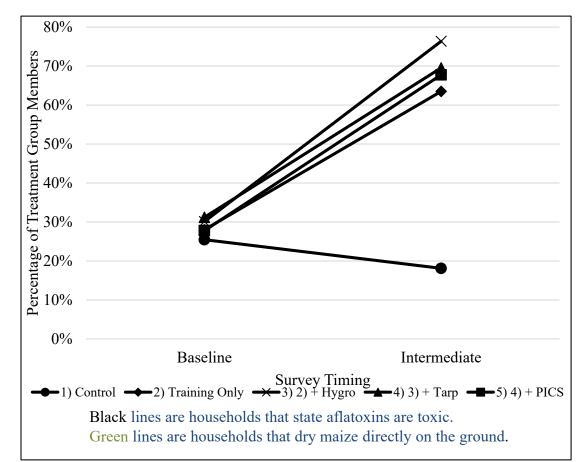
Aflatoxin empirical model

 $A_{ij} = \beta_1 + \beta_2 Train_{ij} + \beta_3 Hygro_{ij} + \beta_4 Tarp_{ij} + \beta_5 PICS_{ij} + \tau T_{ij} + \delta_k X_{ijk} + \alpha_m E_{ijm} + \mu_{ij}$

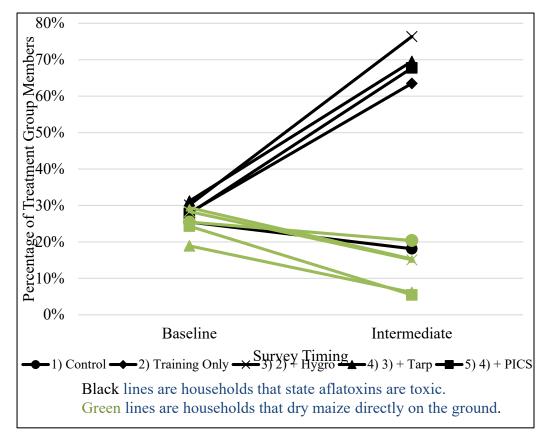
- A_{ij} is the aflatoxin level in ppb [0, 100] of the household's stored maize in April 2017
- *Train*, *Hygro*, *Tarp*, and *PICS* are binary variables equal to 1 if the household received the input of training, a hygrometer, a tarp, or a PICS bag, respectively
 - $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$, and $\hat{\beta}_5$ estimate the marginal effect of receiving <u>only</u> information, a hygrometer, a tarp, or a PICS bag, respectively, on the household's aflatoxin levels.
- T_i is a binary variable that equals 1 if enumerators took two maize samples for testing
- X_{ik} is a vector of the covariates that were not balanced at baseline
- E_{im} is a vector of dummy variables denoting the extension agents, excluding agent 10
- μ_{ij} is the error term

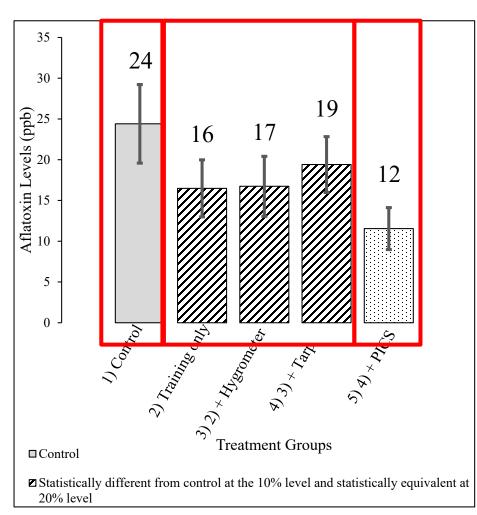
(2)

RESULTS



BEHAVIOR CHANGE FROM BASELINE TO INTERMEDIATE SURVEY BY TREATMENT GROUP


- For all treated groups, knowledge of aflatoxin toxicity (black lines) is upward sloping, whereas for the control group it is downward sloping.
 - 29% awareness at baseline


BEHAVIOR CHANGE FROM BASELINE TO INTERMEDIATE SURVEY BY TREATMENT GROUP

- For all treated groups, knowledge of aflatoxin toxicity (black lines) is upward sloping, whereas for the control group it is downward sloping.
 - 29% awareness at baseline
- All groups decreased ground drying (green lines), but this slope is the steepest for Group 5.
 - 25% ground dry at baseline

MEAN AFLATOXIN LEVELS BY TREATMENT GROUP

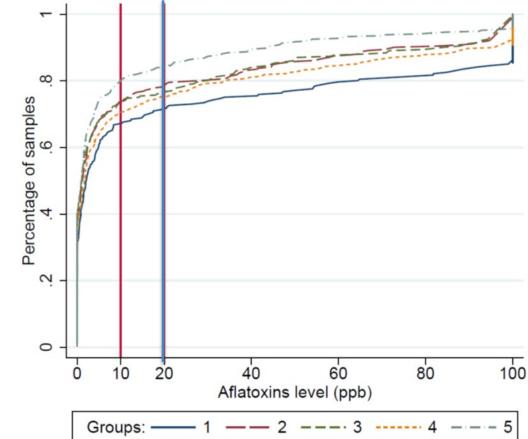

- **1. Bad News**: Aflatoxins are a big problem in stored maize in our sample.
 - 28% of control above US legal limit of 20 ppb
 - 32% of control above Senegal/EU limit of 10 ppb
- **2. Good News:** Training reduced mean aflatoxins levels by 30%.
- 3. Biggest impact was from combination of inputs including PICS bag.
 o 50% reduction in mean aflatoxins level
- 4. Hygrometer and tarps were not additively effective at lowering mean aflatoxins level
- 5. Adding PICS bag to treatment had largest marginal impact

Impacts of interventions on aflatoxin levels (ppb) in stored maize

	0	OLS		Censored Regression Marginal Effects	
	(1)	(2)	(3)	(4)	
Control group (Intercept) - $\hat{\beta}_1$	24.41***	25.60***			
	(3.67)	(4.82)			
Training only - $\hat{\beta}_2$	-9.68**	-10.24**	-11.02***	-10.49***	
	(4.65)	(4.33)	(2.68)	(2.74)	
Hygrometer only - $\hat{\beta}_3$	1.39	1.40	0.71	1.00	
	(3.38)	(3.35)	(2.30)	(2.34)	
Tarp only - \hat{eta}_4	1.63	2.49	2.72	3.16	
	(3.69)	(3.53)	(2.19)	(2.22)	
PICS bag only - $\hat{\beta}_5$	-7.67**	-7.78**	-6.86***	-6.90***	
	(3.18)	(3.12)	(2.03)	(2.04)	
Two samples taken from HH		-3.81		-1.44	
-		(3.05)		(2.09)	

Regression results support notion that the significant marginal impacts come from

Baseline variables


YES

YES

CUMULATIVE DISTRIBUTION FUNCTIONS OF AFLATOXIN LEVELS BY TREATMENT GROUP

- Intervention seems to have lowered aflatoxin levels across the distribution.
- EU limit = 10 ppb
- US limit = 20 ppb

Numbers in parentheses after legend entries are mean aflatoxin levels. For the 134 samples measuring > 100 ppb, we use the value of 100 ppb.

Impact of interventions on probability of aflatoxin levels in stored maize being below the EU and US standards

	EU standard (≥ 10 ppb unsafe)		US standard (≥ 20 ppb unsafe)	
	(1)	(2)	(3)	(4)
Control group (Intercept) - $\hat{\beta}_1$	0.33***	0.35***	0.29***	0.31***
	(0.04)	(0.07)	(0.04)	(0.06)
Training only - $\hat{\beta}_2$	-0.10*	-0.08	-0.10*	-0.07
	(0.06)	(0.06)	(0.06)	(0.05)
Hygrometer only - $\hat{\beta}_3$	0.02	0.01	0.03	0.02
	(0.05)	(0.05)	(0.05)	(0.05)
Tarp only - $\hat{\beta}_4$	0.02	0.03	0.01	0.01
	(0.06)	(0.05)	(0.05)	(0.05)
PICS bag only - $\hat{\beta}_5$	-0.09*	-0.09**	-0.09**	-0.09**
	(0.05)	(0.05)	(0.04)	(0.04)
Two samples taken from HH		-0.03		-0.04
		(0.04)		(0.04)
Baseline variables		YES		YES

Regression results of pushing households to "safe" levels are consistent. Training and PICS have significant impacts

Intervention Cost-effectiveness Estimates

- Training cost of \$6,082 to reach 3,806 households in 168 villages.
- Trainings reduced aflatoxin levels by 9.68 ppb on average.
 - if we consider a training cost of \$1.60/ household, then the marginal cost of using only trainings to lower aflatoxin levels is \$1.60/ 9.68 ppb = \$0.17/ ppb reduced / household.
- Cost per 50 kg PICS bag is \$2.22
- Receiving only the PICS bag reduced aflatoxin levels by 7.67 ppb on average.
 - Cost of PICS bag only per ppb is \$2.22/ 7.67 ppb = \$0.29/ ppb reduced / household
- Combined cost would be (\$2.22 + \$1.60) / (7.67 ppb + 9.68 ppb) = \$0.22/ ppb reduced/ household.
- So to move people from the control group avg. of 24.41 ppb in sample to 7.06 ppb

24.41 - 7.67 – 9.68 ≈ **\$3.82** ≈ (\$0.22* 17.35)

 Cost is for one year. If practices continue, then benefit/cost ratio will be much larger.

Why did training and PICS bags work?

- Training
 - Low initial knowledge of aflatoxins
 - Trainers were trusted info sources (extension agents)
- PICS hermetic bags
 - Physical effectiveness known
 - Killing insects stops aflatoxin spread
 - Suggests links between drying and storage in farmers' mind

Why did hygrometer and tarps not work?

- Tarps
 - − Tarps are about not drying on the ground → Existing alternatives to tarps (roofs, concrete slabs)
- Hygrometers
 - Most people in sample grow maize for subsistence
 - Hygrometer has food safety value
 - Lower opportunity for hygrometer to yield large benefits through higher market power, certification,

CONCLUSIONS

- Training shown to be most cost-effective
 - background knowledge of aflatoxins was low.
 - we used trusted info sources (extension agents) as trainers.
 - ensured women attended training (35% women)
- PICS hermetic bags were effective
 - behavioral links between drying and storage.
 - should train on both together.
- Suggests that farmers take value-chain approach to postharvest activities
 - development projects and policies should too.
- Role for government involvement to raise awareness and promote technologies.
 USAID

THANK YOU FOR YOUR TIME!

Questions: <u>Stacy.Prieto@crs.org</u> jrickerg@purdue.edu

U.S. GOVERNMENT PARTNERS

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

