Linking Food Safety with Health and Nutrition: Insights and Priorities

Feed the Future Innovation Lab for Food Safety
Feb. 24, 2021
WELCOME

Kenny Christianson from Cornell IT is providing technical support today, so please reach out using the chat function if you're experiencing technical difficulties.

If you are unable to hear, connect your speakers by selecting “Join Audio”

Please submit questions for our panelists using the Q&A function.
Haley Oliver
Director of the Feed the Future Innovation Lab for Food Safety
Professor of Food Science
Purdue University
Food security is achieved when foods are safe, nutritious, accessible, and available.
Unsafe food creates a cycle of disease and malnutrition, particularly affecting infants, young children, elderly and sick.
AGENDA

Shanda Steimer – 10 min.
U.S. Agency for International Development (USAID)

Patrick Webb – 10 min.
Feed the Future Innovation Lab for Nutrition
Tufts University

Prabhu Pingali – 10 min.
Tata-Cornell Institute for Agriculture and Nutrition
Cornell University

Jessie Vipham – 10 min.
Kansas State University

Panel discussion – 30 min.
Shanda Steimer
Director of the Center for Nutrition
Bureau for Resilience and Food Security
United States Agency for International Development (USAID)
Patrick Webb

Director of the Feed the Future Innovation Lab for Nutrition

Alexander McFarlane Professor at the Friedman School of Nutrition

Tufts University
Linking Food Safety with Health and Nutrition

Food Safety from a Nutrition Perspective

Patrick Webb
February 2021

Feed the Future Innovation Lab for Nutrition
Water safety matters for health and nutrition

- *E. coli* contamination of ‘treated’, ‘covered’ or ‘improved’ water sources almost as bad as unimproved.
Water safety matters for health and nutrition

- More *E. coli* linked to more EED in child.
- More EED in child associated with stunting and wasting.

<table>
<thead>
<tr>
<th>SW Uganda birth cohort (n=365 children <5y)</th>
<th>Unadjusted linear regression models</th>
<th>Adjusted linear regression models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth at birth</td>
<td></td>
</tr>
<tr>
<td>Stunted (n = 90)</td>
<td>1.88 (1.23, 2.89)*</td>
<td>1.68 (1.22, 2.32)*</td>
</tr>
<tr>
<td>Underweight (n = 9)</td>
<td>0.98 (0.35, 2.76)</td>
<td>0.78 (0.28, 2.18)</td>
</tr>
<tr>
<td></td>
<td>Growth at 6 months</td>
<td></td>
</tr>
<tr>
<td>Stunted (n = 86)</td>
<td>2.31 (1.40, 3.81)*</td>
<td>1.70 (1.21, 2.37)*</td>
</tr>
<tr>
<td>Underweight (n = 25)</td>
<td>1.70 (0.77, 3.74)</td>
<td>1.35 (0.61, 3.06)</td>
</tr>
<tr>
<td></td>
<td>Growth at 9 months</td>
<td></td>
</tr>
<tr>
<td>Stunted (n = 102)</td>
<td>1.66 (0.94, 2.93)</td>
<td>1.34 (0.88, 2.02)</td>
</tr>
<tr>
<td>Underweight (n = 31)</td>
<td>2.36 (1.49, 3.72)*</td>
<td>1.81 (0.92, 3.54)</td>
</tr>
<tr>
<td></td>
<td>Growth at L:M test (12–16 months)</td>
<td></td>
</tr>
<tr>
<td>Stunted (n = 135)</td>
<td>1.67 (1.10, 2.53)*</td>
<td>1.38 (0.88, 2.18)</td>
</tr>
<tr>
<td>Underweight (n = 34)</td>
<td>1.29 (0.81, 2.05)</td>
<td>1.10 (0.61, 1.95)</td>
</tr>
</tbody>
</table>

Cells present odds ratio (OR) and 95% confidence interval, *P*-value < 0.05

Nipah virus spillover to humans from bats

Raw date palm sap
- Globally 144 million children still stunted.
- Suggestion of link to mycotoxins.
- Access to poor quality diet = more intake of mycotoxins
- Food safety is therefore a major concern for nutrition
Rate of weight gain (kg/week) during pregnancy

GULU UGANDA (N=246)

Source: Barnabas Kahiira Natamba et al. FASEB Journal 2016;30:432.6
MATERNAL AFLATOXIN AND BIRTH OUTCOMES

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Uganda (N=3200)</th>
<th>Uganda (N=220)</th>
<th>Nepal (N=1675)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight (kg)</td>
<td>-0.023 (0.009)**</td>
<td>-0.07**</td>
<td>NS</td>
</tr>
<tr>
<td>Weight-for-age Z score</td>
<td>-0.054 (0.018)***</td>
<td>-0.16**</td>
<td>NS</td>
</tr>
<tr>
<td>Small for Gest. Age (%)</td>
<td>1.1408**</td>
<td>NA</td>
<td>1.13**</td>
</tr>
<tr>
<td>Stunting at birth (%)</td>
<td>1.0911**</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Head Circumference</td>
<td>NS</td>
<td>-0.07**</td>
<td>NA</td>
</tr>
<tr>
<td>Head Circum./age</td>
<td>NS</td>
<td>-0.23**</td>
<td>NA</td>
</tr>
</tbody>
</table>

*OR = Odds Ratio

*p<0.05, **p<0.01, ***p<0.001
AFB1 AND CHILD GROWTH (3 MONTHS - 22 MONTHS) IN NEPAL

<table>
<thead>
<tr>
<th></th>
<th>Length (cm)</th>
<th>LAZ</th>
<th>Stunting Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>β</td>
<td>β</td>
<td></td>
</tr>
<tr>
<td>(Ln) aflatoxin B1-lysine</td>
<td>-0.19</td>
<td>-0.05</td>
<td>1.34</td>
</tr>
<tr>
<td>adduct 1</td>
<td>(-0.29, -0.09)**</td>
<td>(-0.09, -0.02)**</td>
<td>(1.02, 1.77)*</td>
</tr>
<tr>
<td>(Ln) aflatoxin B1-lysine</td>
<td>-0.26</td>
<td>-0.08</td>
<td>1.27</td>
</tr>
<tr>
<td>adduct/kg weight 2</td>
<td>(-0.33, -0.18)**</td>
<td>(-0.11, -0.05)**</td>
<td>(1.02, 1.59)*</td>
</tr>
</tbody>
</table>

Significant negative associations between AFB1 concentrations, length, LAZ and odds of stunting.

Andrews-Trevino et al. (2020) “Aflatoxin exposure and child nutrition: measuring anthropometric and long-bone growth over time in Nepal” – Submitted to AJCN
Summary of Findings

Birth Cohort: **Uganda**

i. Blood aflatoxin in pregnant women significantly negative effect on a) gestational weight gain, b) weight-for-age at birth, c) stunting at birth, and d) head circumference at birth.

ii. Maternal HIV/AIDS infection appears to exacerbate these effects on pregnancy outcomes.

Birth Cohort: **Nepal**

i. Even low aflatoxin levels in pregnant women’s blood significantly linked to low SGA.

ii. Levels rise as a child ages, regardless of income, education or location.
CONCLUSIONS

- A *clean food* environment matters at least as much as clean water.

- New evidence now directly implicates mycotoxins with poor birth outcomes and subsequent child stunting.

- Food safety represents a major contribution to nutrition, not only to health and consumer trust.
FEED THE FUTURE
The U.S. Government's Global Hunger & Food Security Initiative
www.feedthefuture.gov
Prabhu Pingali

Director of the Tata-Cornell Institute for Agriculture and Nutrition

Professor in the Charles H. Dyson School of Applied Economics and Management
Cornell University
Food Safety in India

Prabhu Pingali
Professor Applied Economics & Director of the Tata-Cornell Institute
Dyson School of Applied Economics and Management
Cornell University, Ithaca USA

February 24, 2021
Food safety in the Indian context

• **Foodborne illness is widespread**, with ~100 million cases in India annually (this is a conservative estimate, as these illnesses are under-reported)

• By 2030, **one out of every nine people in India** will fall sick with a foodborne disease (Kristkova et al., 2017)

• **At population-scale**: Risk increases with wealth (higher GDP → more meat/perishables consumption → more foodborne disease)

• **Within populations**: Poor food safety practices are associated with low incomes and poverty (Reddy et al., 2020)
I need fruits, vegetables, and animal protein to feed my family!

there are numerous risks throughout the value chain

- India’s growing middle class is increasing the demand for perishables
- Policies and practices required to ensure that safe food reaches the consumer are underdeveloped
- Food safety risks persist throughout the value chain from farm to urban consumer
Major food safety threats in India

- **Bacteria** (*E. coli, Salmonella*, etc.; Khare et al., 2018)
- **Pesticide residues** (Srivastava et al., 2010; Gill et al., 2020)
- **Heavy metals** (Sharma et al., 2018; Marshall et al., 2003)
- **Mycotoxins** (Groopman et al., 2014; Wenndt et al., 2020; Bhat et al., 1997)
Linkages between food safety and nutrition

- Diarrheal disease burden is high
 - Caused by pathogenic microbes in food and water
 - Major cause of malnutrition and mortality in India (Nilima et al., 2018)

- Environmental Enteropathy (EE) is an emerging concern
 - Exposure to toxins in the environment, including via food
 - EE associated with growth impairment and intestinal permeability in India and elsewhere (McKay et al., 2010)

- Trade-off between safe and nutritious foods
 - *Example:* aquaculture fish can be a good source of protein for the poor in India, but also contribute heavy metal toxins to the diet (Marriott et al., 2020)
Sources of foodborne disease in India

Illnesses

Deaths

Bisht et al., 2021
Mycotoxin case study reveals the importance of food systems thinking

• Certain crops such as maize, groundnut, and millet are more prone to contamination than others
• Some communities’ diets are substantially riskier than others
• The consumption of unsafe foods can be variable across seasons

Thus: the risk of food safety-related health and nutrition adversity is shouldered disproportionately by some vulnerable sub-populations
• Surveillance and regulatory systems must adequately identify and address these food system dynamics
Food safety regulation in India

• **Food Safety & Standard Authority of India** (FSSAI) is the major regulatory body
 • Emerging from the Food Safety & Standards Act, 2006
 • Regulates many contaminants associated with foodborne illness
• Current local “regulated markets” or **mandis** are not adequate for preserving quality or enabling traceability of safety concerns (Deininger & Sur, 2007)
• **Smallholder farmers engaged in self-provisioning** have virtually no access to regulatory services or food safety-related information
Necessary actions to reduce food safety risk across the value chain

- Good agronomy and varieties
- Effective, accessible post-harvest technology
- Develop cold chain systems
- Compliant practices and facilities
- Regulation and quality premiums
- Demand for safe, high-quality produce

Steps:
- Farm
- Storage
- Transit
- Processing
- Market
- End use
A “one health” approach to improving food safety

- Improve **plant health and agronomy** to reduce populations of pathogenic and toxigenic microorganisms
- Improve **animal production and distribution systems**, along with veterinary medicine, to prevent disease outbreaks
- Improve environmental and infrastructural **constraints to proper food storage and hygiene**
- Improve **messaging and awareness at the grassroots level** and throughout value chains to boost detection and prevention

Destoumieux-Garzon et al., 2018
SPEAKER

Jessie Vipham
Assistant Professor of Food Microbiology and Food Safety
Kansas State University
Nutritious Food for All? The Role of Fresh Food Markets in Nutrition and Food Safety

February 24, 2021 FSIL Webinar Series

Jessie L. Vipham, Assistant Professor, Kansas State University
THE NEXUS OF FOOD INSECURITY AND FOOD SAFETY

1 in 5 people are food insecure

1 in 8 people suffer foodborne illness
THE NEXUS OF FOOD INSECURITY AND FOOD SAFETY

Food insecure and the available food is unsafe
NUTRITIOUS FOOD FOR ALL

- Global nutrition initiatives encourage the consumption of nutrient rich foods.

- Fresh food markets can provide physical access to locally available, nutritious foods.

- Nutrient rich foods (animal source foods/raw fruits and vegetables) are common high-risk foods in terms of food safety.

- Fresh food markets commonly lack basic food safety handling practices, sanitation, and infrastructure.
Lessons Learned: Findings on Non-typhoidal *Salmonella enterica* from Fresh Food Markets in Cambodia
Figure 1. Prevalence of *Salmonella enterica* on vegetables sold in Cambodian informal markets collected at two different seasons. Different letters indicate significant differences between groups (P<0.05).

- **Salmonella** was isolated from 28.2% of total samples (312).
- Fresh food markets are the final point in the value-chain before raw vegetables reach consumers.
- Consumption of contaminated raw vegetables pose a risk to human health.

Prevalence of *Salmonella enterica* from Environmental Surfaces

- *Salmonella* was isolated from multiple market surfaces.
- Seasonal data mimicked vegetable-level data, with the highest prevalence being observed on food contact surfaces in the dry season.
- Market conditions and environmental surface data suggests a high potential for cross-contamination within markets.

Figure 2. Estimated prevalence of *Salmonella enterica* (and corresponding 95% confidence intervals) on food contact surfaces (FCS) and non-food-contact surfaces (NFCS) during dry and rainy seasons. (a,b). Letters indicate significant differences between surface types within each season at alpha = 0.05.

Serotype Distribution of *Salmonella enterica* Isolates

- High serotype and surface type diversity may suggest multiple points of contamination.
- *Salmonella* Rissen, *Salmonella* Hvittingfoss, and *Salmonella* Corvallis were the most prevalent serotypes.
- *Salmonella* Corvallis has been isolated from clinical samples of multiple patients with travel history to South East Asia (United Kingdom, Japan, U.S. and Thailand).

Figure 3. Diversity of the 16 serotypes of *Salmonella enterica* detected in various sample types.
But do they cause disease?

13 SNPs

IS IT TIME FOR A CLEAN REVOLUTION?

Food safety provides strong opportunities for improved outcomes in public health and agriculture productivity. However, there is a need for future research and development initiatives to:

• Focus on sanitary design, sanitation and handling practices, and functional food safety networks.
• Promote holistic public health outcomes.
• Develop national technical experts, with an emphasis on data scientists.
• Invest in national surveillance and monitoring programs.
FEED THE FUTURE
The U.S. Government's Global Hunger & Food Security Initiative
LINKING FOOD SAFETY WITH HEALTH AND NUTRITION: INSIGHTS AND PRIORITIES

Panel Discussion

Shanda Steimer
USAID Perspective on Food Safety and Nutrition

Patrick Webb
Food Safety from a Nutrition Perspective

Prabhu Pingali
Food Safety in the Indian Context

Jessie Vipham
Fresh Food Markets in Nutrition and Food Safety
A link to the recording and presentations will be emailed to attendees next week

Feed the Future Innovation Lab for Food Safety
Next webinar:
Food Safety and Private Sector Partnerships
March 16 9-10:30 EDT

Kelly Cormier
USAID Center for Nutrition

Thoric Cederstrom
Food Enterprise Solutions

Greg Grothe
Land O’Lakes Venture 37

Howard Popoola
Kroger