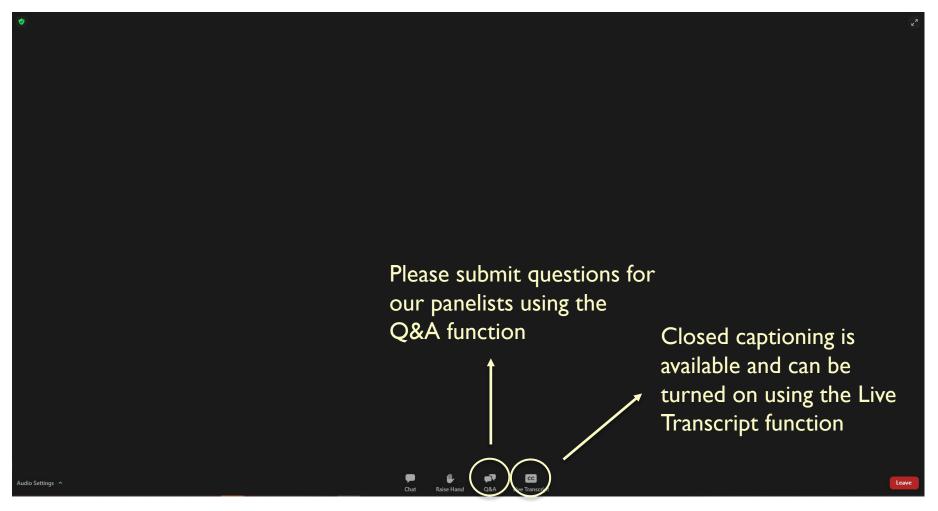


Applying Risk-Based Approaches in Food Safety

Feed the Future Innovation Lab for Food Safety

June 14, 2023



AGENDA

Welcome and Introduction – 5 min. Haley Oliver, FSIL Director, Purdue University

Risk Assessment in Latin America – 20 min. Fernando Sampedro, University of Minnesota

Risk Prioritization Case Study – 20 min. Hung Nguyen, International Livestock Research Institute

Q&A – 15 min.

SPEAKER

Implementation of Risk-Based Inspection and Surveillance Systems in Latin America

Fernando Sampedro, Ph.D. Professor, Environmental Health Sciences School of Public Health University of Minnesota

Implementation of risk-based inspection and surveillance systems in Latin America

Fernando Sampedro, PhD University of Minnesota

Outline

Current food safety challenges in the LATAM region

Risk-based inspection models

Implementation examples in countries

How do we protect public health with the available resources

Current challenges

- Increase small food enterprises
- Tight budgets
- Old laboratories
- Lack of systems harmonization
- Lack of trust among 'neighbors'

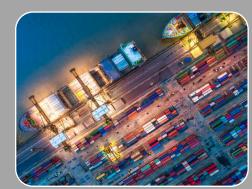
Current information gaps

LIMITED SURVEILLANCE data for pathogens in food

UNDER-REPORTING of

foodborne illnesses

OLD CONSUMPTION surveys

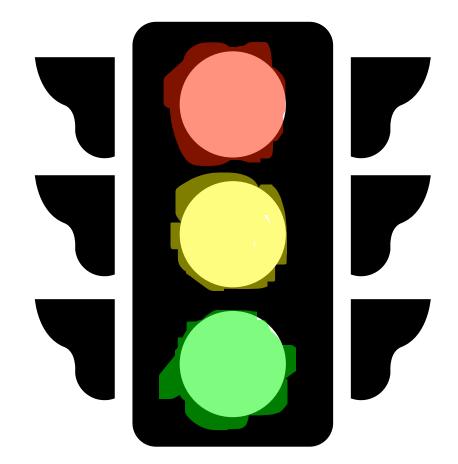

Risk-based inspection

Adjust the **frequency** and **type of inspection** according to risk

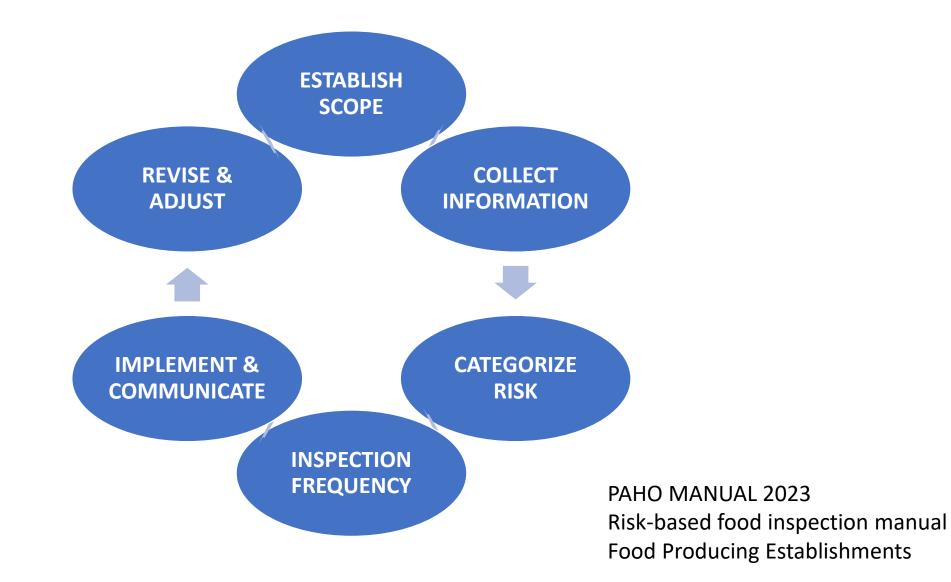
Domestic

- Food category RISK
- Establishment RISK

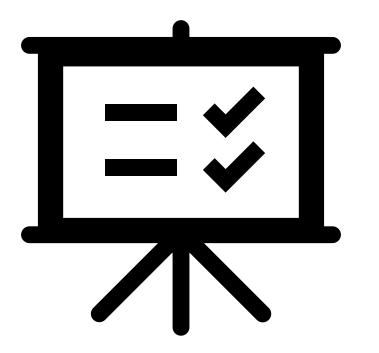
Import-export


- Tariff Heading RISK
- Importing Country RISK
- Importer RISK

Risk-based inspection goals



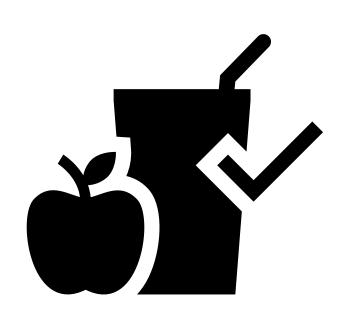
Risk Algorithm


- Assigns the risk level and type of inspection
- Real-time after each inspection
- Includes alerts, recalls and laboratory samples

Domestic risk-based inspection steps

Establish Scope

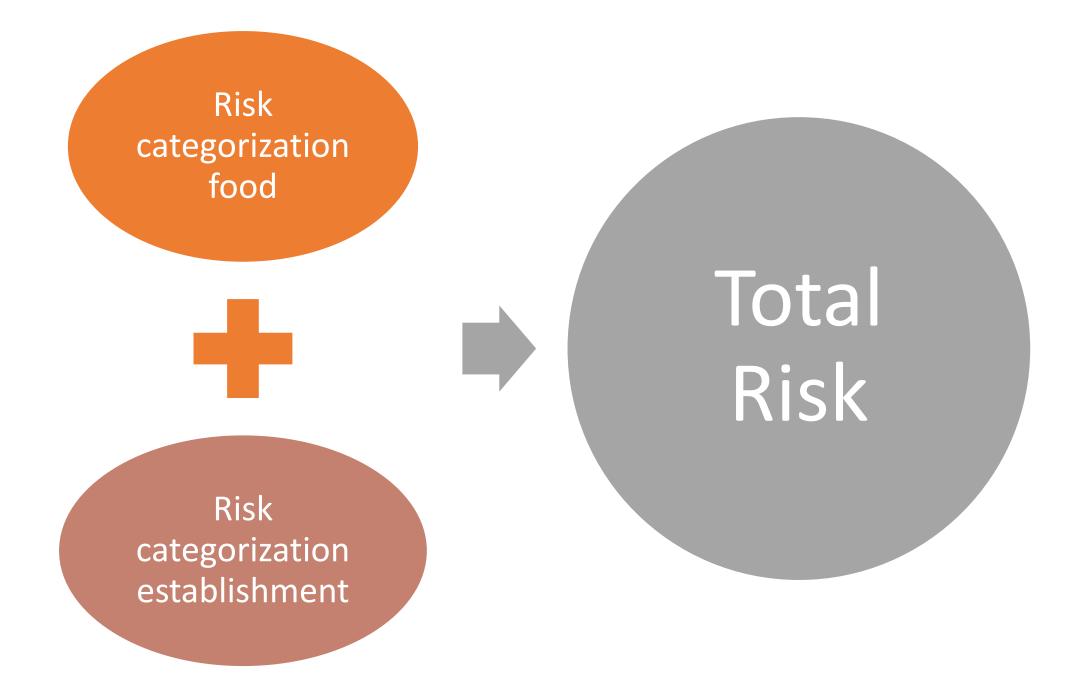
- Progressive implementation
- Pilot experience in 1 or 2 priority food chains
- Type of facilities to be covered
 - By the volume of production
 - By the number of employees


Collect information (facilities)

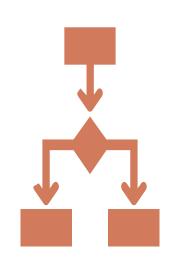
Information on establishments

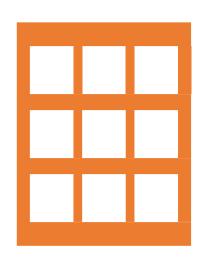
- Register of companies
- Location
- Type of foods commercialized
- Annual production
- History of inspections and non-compliances
- Scope of commercialization (local, national or export)
- Private Schemes

Collect information (food)



Food categories


- Definitions of foods commercialized
- Foodborne diseases and outbreaks in the country
- Hazards identified by food
- Market recalls, international alerts
- Per capita consumption


Example of dairy categories

Group 1	Pasteurized milk, ultra-pasteurized milk, UHT milk, evaporated milk, sterilized milk, pasteurized milk cream, UHT milk cream, sterilized milk cream, fluid ice cream		
Group 2	Milk powders, instant milk powders, cream powders, cheese whey powders, buttermilk powders, whey protein concentrate, cheese powders, ice cream powders, powdered ice cream mixes, food preparations based on powdered dairy products		
Group 3	Milk powders with dry additives		
Group 4	Condensed milk, dulce de leche, milk caramel		
Group 5	Butter, butter oil		
Group 6	Yoghurt, fermented or cultured milk		
Group 7	Processed or melted cheese without post heat treatment aggregates and UHT processed cheese		

Risk Ranking Tools

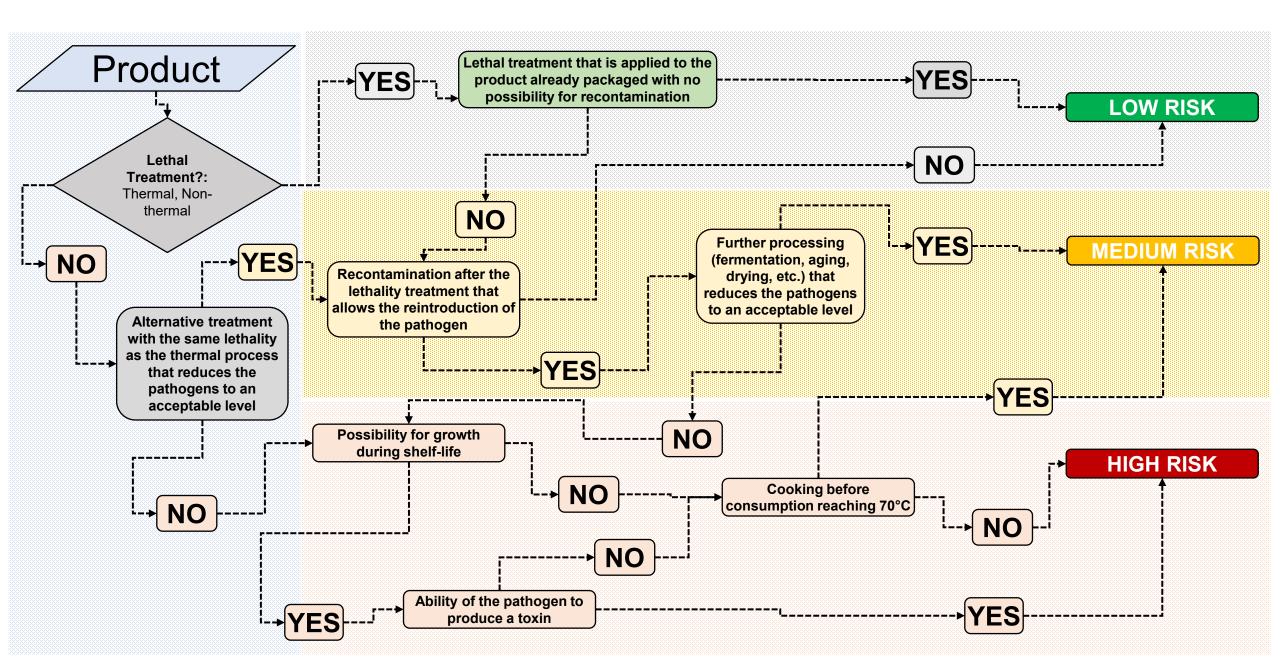
Decision trees

Risk matrices

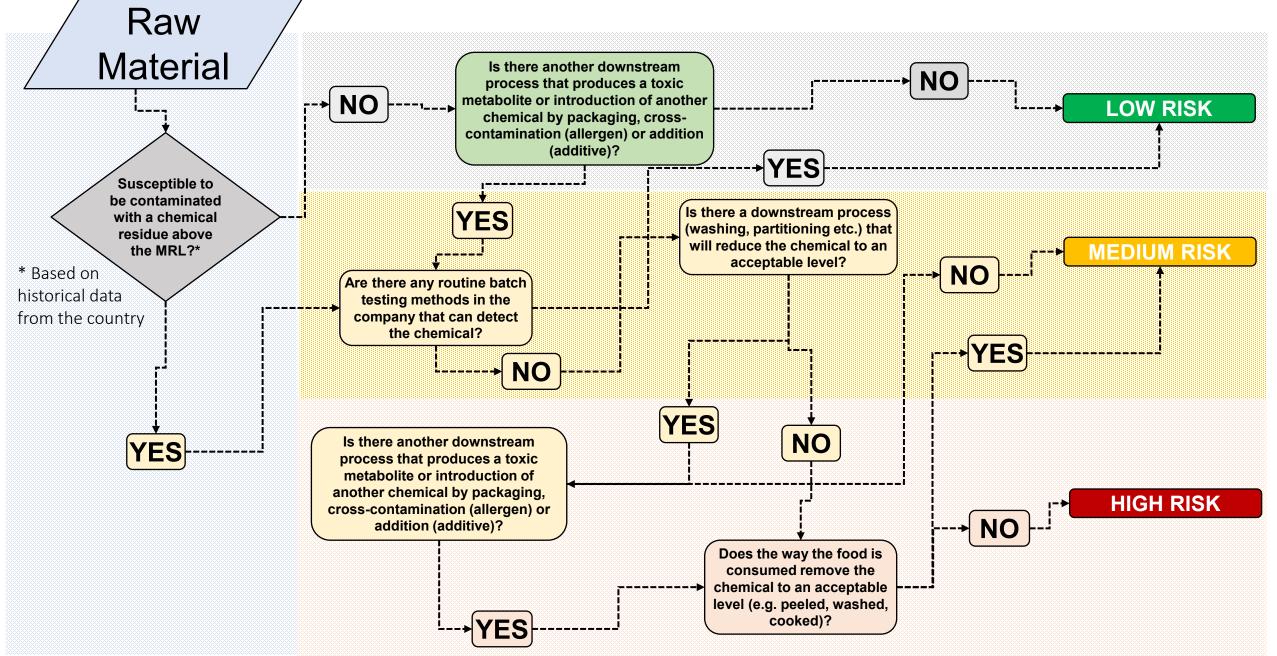
MCDA

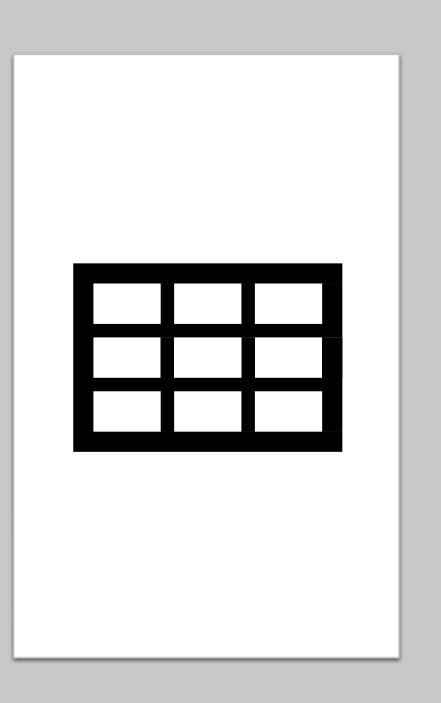
Decision trees

High number of food products



Qualitative tool, limited data




Filter out the low-risk products

Biological Hazard-Decision Tree

Chemical Hazards-Decision Tree

Multifactorial Risk Matrix

- 1. Define risk factors
- 2. Assign scores to each factor (e.g. 1-7)
- 3. Define the relative weight of each factor (%)
- 4. Add the scores and their relative weights to calculate the level of risk

Risk factors establishment

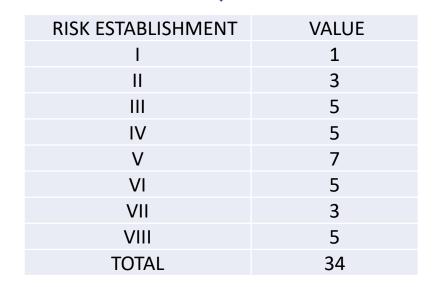
- Degree of regulatory compliance (GMP or HACCP)
- Volume of production and/or number of employees
- Scope of marketing (e.g., local, national)
- Target population of the food (e.g., baby food)
- Degree of food handling
- Plant layout and personnel flow
- Number of non-conforming samples (surveillance plan)
- History and degree of resolution of nonconformities
- Traceability and recall plan
- Allergen control
- Signs of product fraud or adulteration
- Hygienic zoning and environmental control of surfaces

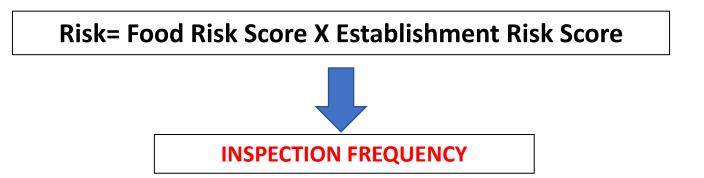
Example of establishment risk matrix

Risk factor	Risk scoring	Relative Weight
Production volume	 Large (+2,000,000 lt/month) (7 pts) Medium (800,000-2,000,000 lt/month) (5 pts) Small (200,000-799,000 lt/month) (3 pts) Micro (< 200,000 lt/month) (1 pts) 	15%
Food safety management system	 Has pre-requisites (GMP, SSOP, SPS) (7 pts) Previous item + HACCP (verified) (5 pts) Previous item + Export authorization (3 pts) Previous item + International private standard (1 pt) 	20%
Compliance with GMPs or HACCP	 70 - 80% (7 pts) 81 - 89% (5 pts) 90-95% (3 pts) > 95% (1 pt) 	20%
Product handling	 More than two handling points after heat treatment or equivalent treatment (7 pts) Two handling points after heat treatment or equivalent treatment (5 pts) One handling point after heat treatment or equivalent treatment (3 pts) The system is closed and therefore there is no possibility of recontamination (1 pt) 	5%

Quantitative checklist

ITEM	REQUIREMENTS	COMPLIANCE SCORE	VALUE	CATEGORY	FINDINGS
Location	a) Located in a place where there are threats to the safety or suitability of food and adequate safety or suitability of food, and adequate protective measures have not been taken to prevent contamination.	Full compliance (100%)	=1*1=1	Major	
	 b) If even though protective measures have been taken, a threat to food safety or suitability still exists 	Partial (50%)	=0.5*1=0.5		
Surroundings	a) Adequate maintenance of roads, loading, unloading and parking areas, avoiding contamination that can be dragged into the plant through air currents, personnel traffic, contamination adhered to personnel clothing, puddles, chemical spills, etc.	Full (100%)	=1*1=1	Major	
	b) Adequate storage of disused equipment and parts; no trash, waste and nonconforming products, stagnant water, maintenance of green areas; clean drainage and gutters, treatment and disposal of solid and liquid waste.	None (0%)	=0*1=0		
	50	75% compliance			


Risk Categorization Food


ARBOL DE DECISION PELIGROS QUIMICOS Materia prima Susceptible de estar conta un químico a niveles potencialmen perjudiciales para la salud?* Existe algún método de análisis realizado de forma rutinaria qu NO SI tecte el químico en la materi prima? Existe algún tratamiento posterior que NO produzca un metabolito tóxico a partir del químico en la materia prima o introducción de otro químico por SI Existe algún tratamiento (ej. lavado) o proceso (ej. contaminación cruzada (ej. alérgeno rtición) que reduzca el químico a un nivel aceptable mpaque) o adición (ej. aditivos)*? SI NO Existe algún tratamiento posterior que concentre el químico, produzca un NO netabolito tóxico o introduzca el quími r contaminación cruzada (ej. alérgen empaque) o adición (ej. aditivos)*? La forma de consumo no elimina el químico (ej avado, cocinado) y la cantidad consumida hace qu NO se exponga a una dosis por encima de la tolerable diaria o semanal NO SI **PRODUCT RISK** VALUE HIGH 4 MODERATE 2

LOW

1

Risk categorization establishment

Inspection Frequency

Total RISK	Inspection FREQUENCY
Less than X1	Annual
Between X2 and X3	Every 9 months
Between X4 and X5	Every 6 months
More than X6	Every 3 months

- Each country must define inspection frequencies (quarterly, semi-annual, annual, biannual)
- It is important to comply with the inspection schedule

Revise, Adjust and Communicate

- Risk level assigned should be reviewed
 - Changes made to the plant
 - Inspection history
 - Outbreaks and cases of FBD
 - International alerts
 - Emerging hazards
- Transparency and communication of inspection plan
 - Improved confidence and industry awareness of standards

Strategic PLAN-Risk-based Inspection

% HIGH-RISK establishments

% MEDIUM-RISK establishments

% LOW-RISK establishments

Risk factors: Import-Export

Tariff category

 Inherent food safety risk Country of origin

- International alerts (FDA, RASFF)
- Surveillance and control programs
- Trade agreements

Importer

- Non-compliances per year
- Import volume

Origin facility

- HACCP
 Official inspection at origin
- Number of positive lab results

Examples from countries

Honduras

- Risk-based inspection models
 - RTE meat and dairy establishments
 - Fresh produce, shrimp and dairy farms
 - Third-party laboratories
- Risk-based surveillance system
 - Foodborne pathogens and veterinary drugs
- Use of third-party schemes into the inspection models

Costa Rica

- Risk-based inspection models
 - RTE meat, dairy and seafood establishments
- Risk-based surveillance system
 - Veterinary drugs
 - Heavy metals
 - Additives
 - Pesticides in fresh produce
- Online inspection platform
 - Real-time inspection data and frequency adjustment

Other Countries (Work in progress)

- Guatemala
 - Risk-based inspection model for RTE meat products and dairy facilities
 - Risk-based inspection model for dairy farms
- Dominican Republic
 - Risk-based inspection model for dairy facilities

Future work

- Harmonization and equivalency of inspection systems
- Increase trust
- Establish strategic goals aligned to public health metrics
- Increase funding for consumption surveys and baseline studies

Supporting Agencies

ORGANISMO INTERNACIONAL REGIONAL DE SANIDAD AGROPECUARIA

THANK YOU!

Fernando Sampedro, PhD Email: <u>fsampedr@umn.edu</u>

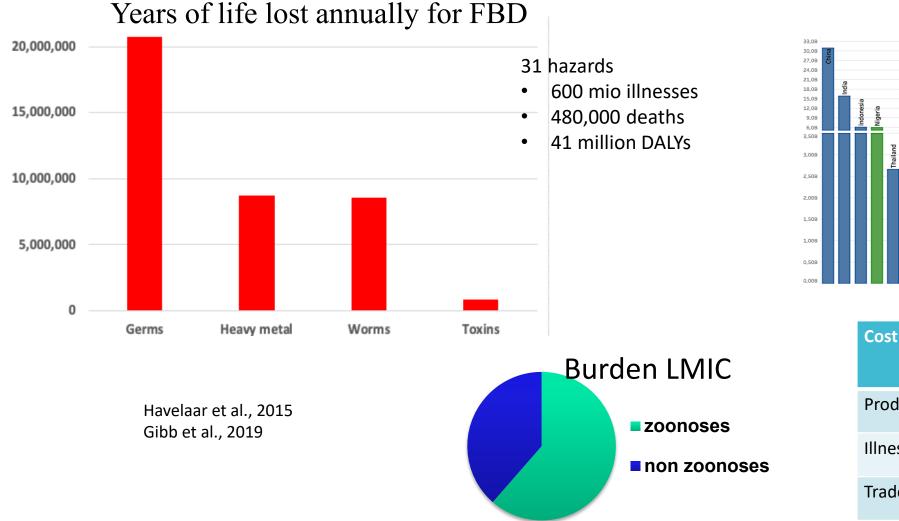
SPEAKER

Risk Prioritization Case Study

Hung Nguyen, Ph.D. Co-Leader, Animal and Human Health Program International Livestock Research Institute

Food Safety Risk Prioritization: Case Studies from Asia

Hung Nguyen - Co-leader, ILRI Animal and Human Health Program, Kenya Sinh Dang – Postodoc, ILRI Animal and Human Health Program, Vietnam Delia Grace – Professor at NRI, and Joint Appointed Scientist with ILRI, UK


Introduction to Risk-Based Approaches in Food Safety

FEED THE FUTURE INNOVATION LAB FOR FOOD SAFETY WEBINAR

Context of foodborne diseases

2

Cost estimates for 2016 : > US\$ 115 billion				
Productivity loss	95			
Illness treatment	15			
Trade loss or cost	5 to 7			
	CGI	AR		

Food value chains and informal markets

Reliance on regulations without institution building will not make food safe

100% of milk in Assam doesn't meet standards

98% of beef in Ibadan, 52% pork in Ha Noi, unacceptable bacteria counts

92% of Addis milk and 46% of Nairobi milk had aflatoxins over EU standards

36% of farmed fish from Kafr el sheikh exceed one or more MPL


30% of chicken from commercial broilers in Pretoria unacceptable for S. aureus

24% of boiled milk in Abidjan unacceptable S. aureus

Approaches and solutions to food safety in LMICs

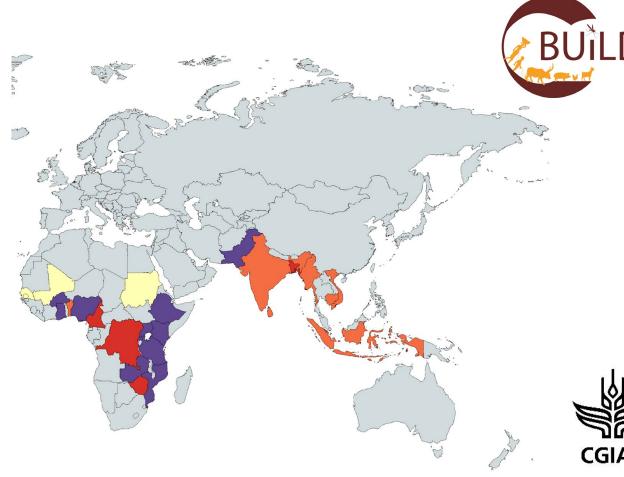
- Generate evidence: hazards and risks
- Develop solutions to improve food safety: technological and institutional innovations
- Focus: informal markets, animal source food (ASF: meat, milk and eggs) but also vegetables, pathogens but also aflatoxin and chemical hazards
- Consideration: gender, nutrition, animal welfare

Risk analysis framework Risk-based approach

Our Food safety work

Boosting Uganda's

Development


RESEARCH **PROGRAM ON** Agriculture for Nutrition **CGIAR** and Health

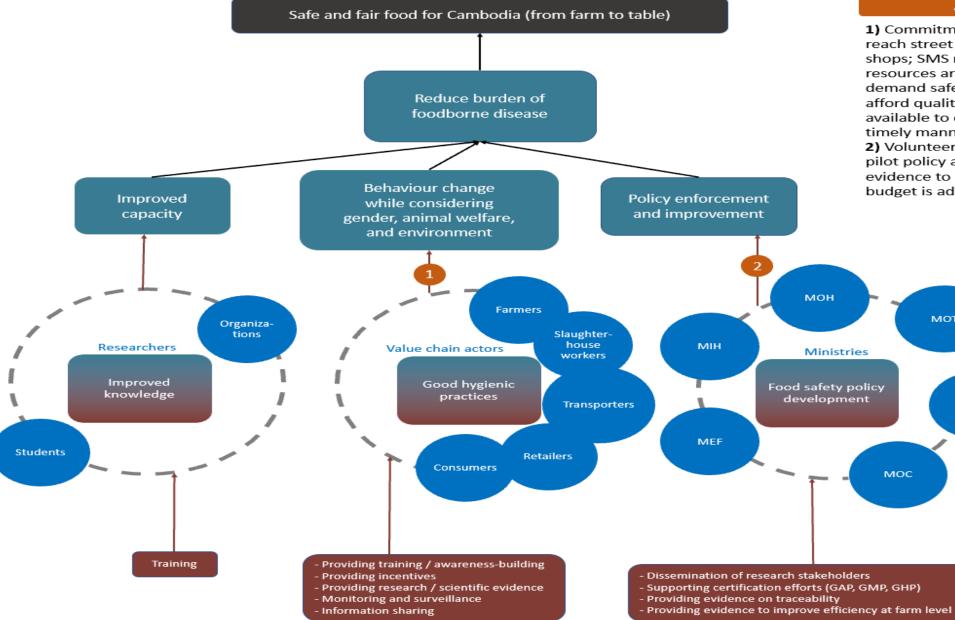
Delia Grace Hung Nguyen

- ~ 15 scientists
- ~ 5 post docs
- ~ 10 PhDs
- ~ 12 MSc

GBAD_S

HESA Capacitating One Health in Eastern and Southern Africa

Protecting Human Health Through a One Health Approach

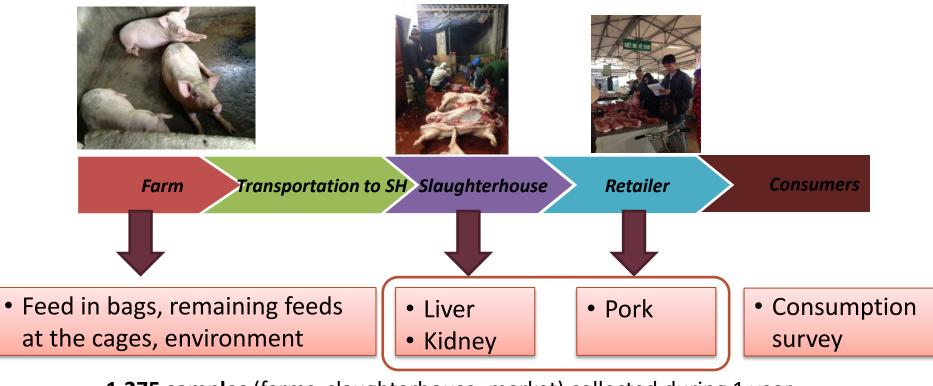


Theory of Change

Assumptions

1) Commitment and participation; can reach street food and mobile meat shops; SMS reaches consumers; human resources are adequate; consumers demand safer food; consumers can afford quality food; technology is available to determine food safety in a timely manner.

Volunteers agree to take part in a pilot policy and provide feedback; evidence to support policy is adequate; budget is adequate.


мот

MAFF

PigRISK: Pork safety in Vietnam (2012-2017)

Microbial and Chemical Risk Assessment

- Salmonella risk pathways developed for producers, slaughterhouse and consumers, quantitative microbial risk assessment (QMRA) risk for consumer
- Chemical risk assessment: antibiotic residues, banned chemicals, heavy metals

1,275 samples (farms, slaughterhouse, market) collected during 1 year

IVESTOCK RESEARCE

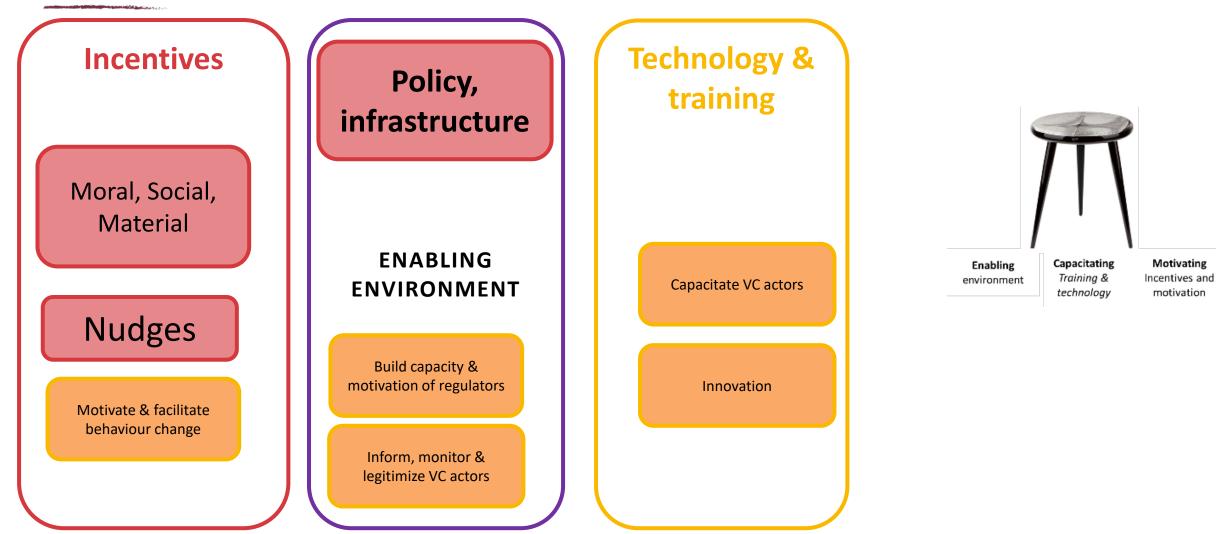
CGIAR

QMRA for salmonellosis

Age and gender groups	Estimated annual salmonellosis incidence rate (Mean (90% CI)) (%)		
Children (under 5 years old)	11.18 (0 – 45.05)		
Adult female (6-60 years old)	16.41 (0.01 – 53.86)		
Adult male (6-60 years old)	19.29 (0.04 – 59.06)		
Elder (over 60 years old)	20.41 (0.09 – 60.76)		
Overall	17.7 (0.89 – 45.96)		

- 94 million people
- Cases of foodborne diseases by Salmonella in pork at 17%: 16 million get sick
- **\$ 107:** cost of hospitalization/FBD case

Safe Food, Fair Food for Cambodia (2018-2021)


A nationwide multi-hazard survey in markets in Cambodia found the prevalence in meat (**pork and chicken**) of Salmonella was 43% and of Staphylococcus aureus was 31%.

	Ν.	N. positive both	Salmonella	S. aureus
Sample type	Specimen	Salmonella and S. aureus	positive	positive
Chicken	186	38 (20.4%)	84 (45.2%)	78 (41.9%)
Cuttingboard chicken	62	6 (9.7%)	26 (41.9%)	12 (19.4%)
Cuttingboard pork	62	1 (1.6%)	19 (30.6%)	7 (11.3%)
Pork	186	33 (17.7%)	85 (45.7%)	58 (31.2%)
Grand Total	496	78 (15.7%)	214 (43.1%)	155 (31.3%

The cost of illness of **foodborne diarrhea** was \$63 USD per case.

	Cost	National Hospital (n=44)	Referral Hospital (n=60)	Regiona l Hosp. (n=100)	Commu nity Clinic	Overall (n=266)
		(11-44)	(11-00)	(11-100)	(n=62)	
j	Direct medical cost				(11=02)	
Ī	[usd]	125.77	9.42	27.85	4.19	34.38
	Direct non-medical					
	cost					
	[usd]	40.64	8.36	26.33	0.30	18.58
	Indirect cost					
	[usd]	21.43	6.38	10.89	3.08	9.80
	Total cost [usd]	185.88	24.16	65.07	7.57	62.76

Interventions: the 3 legged stool

Food safety intervention at slaughter in Vietnam

Training for SH owners &

workers

Photo credit: Sinh Dang Xuan/Chi Nguyen ILRI 2020

Food safety intervention at slaughterhouse and retail (2018-2022)

HANDBOOK: 5 KEYS TO WORKERS FOR SAFER PORK IN SLAUGHTERHOUSE IN VIETNAM

SAFEPORK PROJECT (2017-2022)

Approach:

- Participatory risk-assessment
- Supportive formative research with model retailers
- Risk communication

Key content*:

Key content:

-Grid slaughter -Frequent washing (and disinfection) -Training -Separation clean/dirty -Branding

-Easy to clean surface -Frequent washing (and disinfection) -Separation (fresh/cooked) -Training

-Hygienic cutting board -Branding

HANDBOOK: 5 KEYS TO RETAILERS FOR SAFEF PORK IN TRADITIONAL MARKETS IN VIETNAM

SAFEPORK PROJECT (2017-2022)

Handbooks

MARKET VENDORS IN CAMBODIA

Trial retailers:

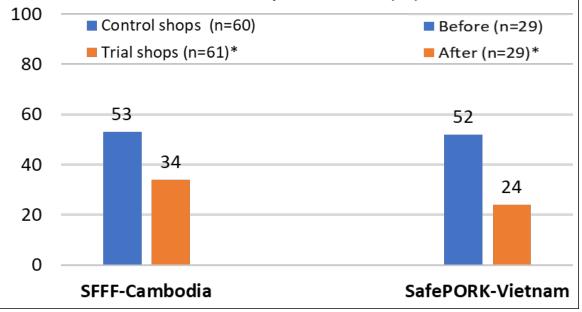
- 84% of the trial retailers had a good knowledge of safe meat handling compared to the control group (44%)
- The KAP scores of retailers in the intervention significantly improved.

Control: Vendors who practices and operate their selling as usual

Trial: Vendor who get our incentive and used

Impact of bacterial reduction from simple interventions at SH & MK

Before


After

Total bacterial count in pig slaughterhouses and marketed pork

Pig slaughterhouse in Vietnam	Baseline	Middle	Endline
Floor (LogCFU/cm ²)	6.0	4.4*	4.6*
Worker hand (LogCFU/hand)	7.2	7.1	7.0
Pig carcass (LogCFU/cm ²)	4.5	4.2	4.4
Pork shop in SFFF-Cambodia	Control (n=180)		Trial (n=180)
Marketed pork (LogCFU/g)	6.9		6.3*

Salmonella prevalence (%) in pork at traditional markets

+ Missing ingredient: Enabling Environment

International Livestock Research Institute

Training course report

Food safety risk assessment for informal value chains in Bangladesh

Dhaka, Bangladesh 22–24 October 2018

Research and training partnership to assist policy and capacity building in improving food safety in Vietnam

Hung Nguyen-Viet^{a,b,*}, Delia Grace^g, Phuc Pham-Duc^b, Sinh Dang-Xuan^b, Toan Luu-Quoc^b, Fred Unger^{a,g}, Seth de Vlieger^{a,g}, Ngoc Pham-Thi^c, Nhiem Duong-Van^d, Long Nguyen-Hung^e, Luan Tran-Dinh^f, Tran Thi Tuyet-Hanh^b

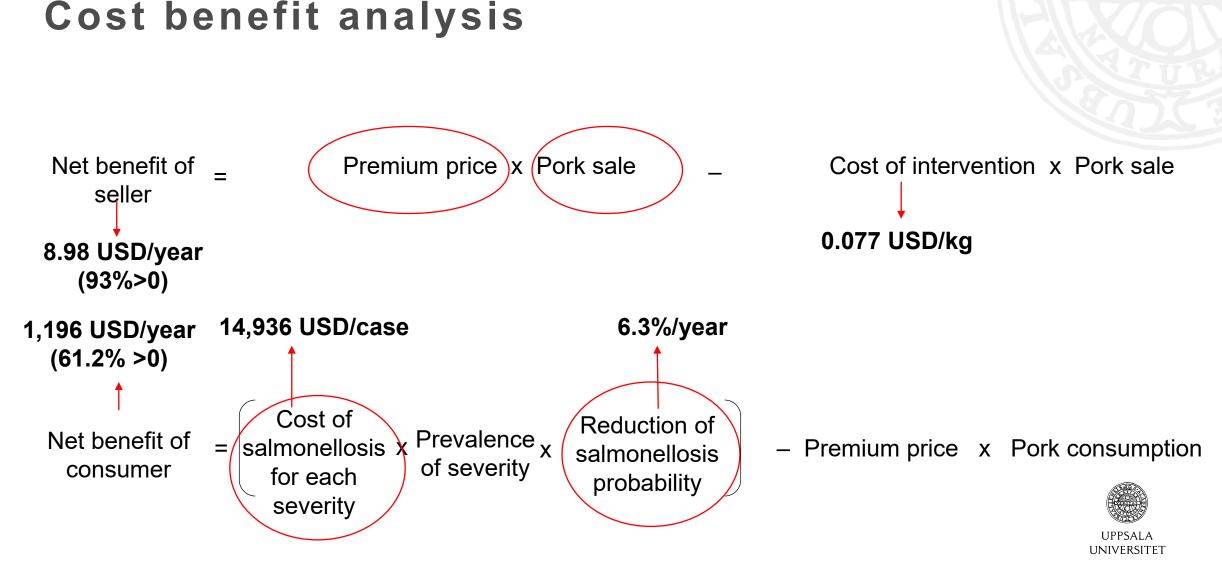
^a International Livestock Research Institute, Hanoi, Vietnam

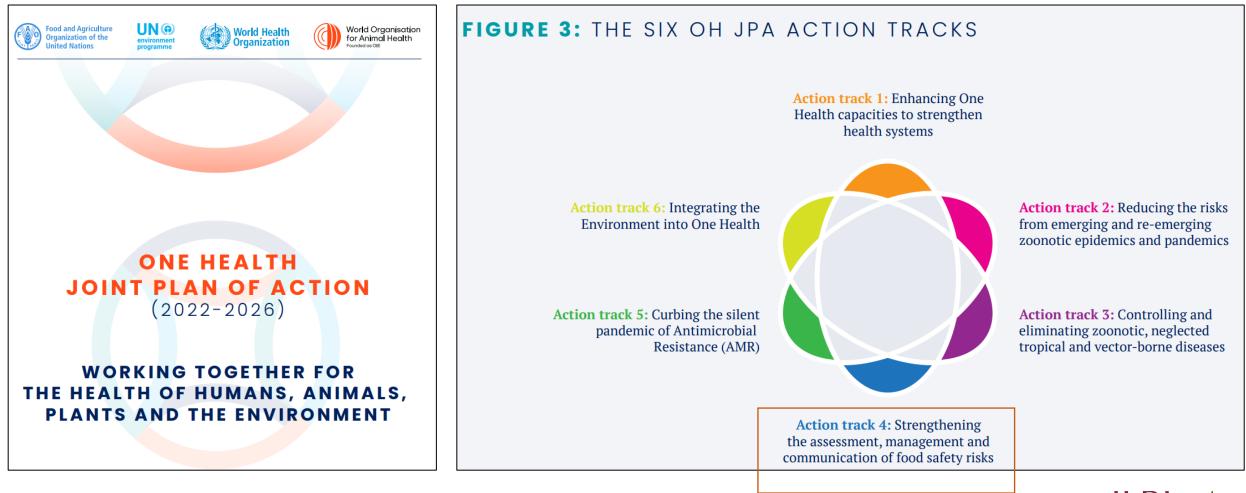
^b Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Hanoi, Vietnam

^c National Institute of Veterinary Research, Hanoi, Vietnam

- ^d Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
- ^e Vietnam Food Administration, Ministry of Health, Hanoi, Vietnam

^f Directorates of Fisheries, Ministry of Agriculture and Rural Development, Hanoi, Vietnam


Next generation of food safety workers Capacity building in meat inspection in Vietnam, Laos, Cambodia



Global One Health: Quadripartite and OHHLEP

NEW DIRECTIONS

for tackling food safety risks in the informal sector of developing countries

Spencer Henson, Steven Jaffee and Shuo Wang

World Food Safety Day 7 June 2023


"Safe food is a primary determinant of human health. It is a basic human right to have access to safe, nutritious and healthy food. To guarantee this right, governments must ensure that available food meets safety standards".

- Food safety in informal/wet markets: high level of microbial contamination along the value chains and high public concern
- 2. Risk based approach (hazard vs. risks) helps identify targeted interventions and key stakeholders to improve food safety
- **3. Interventions: 3-legged stool/ECM** to improve food safety, it works!
- **4. Capacity building:** trainings at different levels are key to improve food safety
- 5. Strong engagement of high level 'taskforce', and other actors (animal health workers, market managers, retailers) made intervention implementation successful

The International Livestock Research Institute (ILRI) is a non-profit institution helping people in low- and middle-income countries to improve their lives, livelihoods and lands through the animals that remain the backbone of small-scale agriculture and enterprise across the developing world. ILRI belongs to CGIAR, a global research-for-development partnership working for a food-secure future. ILRI's funders, through the <u>CGIAR Trust Fund</u>, and its many partners make ILRI's work possible and its mission a reality. Australian animal scientist and Nobel Laureate Peter Doherty serves as ILRI's patron. You are free to use and share this material under the Creative Commons Attribution 4.0 International Licence ©.

better lives through livestock

ilri.org

CONTACT US

Let's continuing the conversation on risk-based approaches for food safety.

We'd like to hear from you to understand the countries, value chains, and market sectors where there is enthusiasm for this approach.

Feed the Future Innovation Lab for Food Safety

Cornell University

Applying Risk-Based Approaches in Food Safety Panel Discussion

Fernando Sampedro

Hung Nguyen

THANK YOU

A link to the recording and presentations will be emailed to attendees.

Feed the Future Innovation Lab for Food Safety

Cornell University

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

