Forms of Nitrogen Fertilizer

Krishna Nemali, Ph.D.
Purdue University

- Nitrogen is required for vegetative growth of plants
- When deficient
 - Plants become stunted
 - Older leaves appear yellow and lack chlorophyll

Facts about Nitrogen fertilizer

- Nearly 80% of air is nitrogen
- Each acre of land contains ~75 million pounds of N; not a single pound is useful to plants unless N is fixed into nitrate or ammonium forms
- Lightning and some bacteria can fix atmospheric N; however industrial fixation (Haber-Bosch process) is the main source of nitrogen fertilizer to crops
- About 1000-7000 lb/acre of nitrogen fertilizer is applied in ornamental industry

Nitrogen fertilizer is applied to crops in different forms

Common forms of nitrogen fertilizer are:

- Urea
- Ammonium
- Nitrate

GUARANTEED ANALYSIS	20-10-20
Total nitrogen (N)	20%
8.0% ammoniacal nitrogen	
12.0% nitrate nitrogen	
Available phosphate (P ₂ O ₅)	
Soluble potash (K ₂ 0)	20%
Magnesium (Mg)	0.15%
0.15% water soluble magnesium (Mg)	
Boron (B)	0.0125%
Copper (Cu)	0.0125%
0.0125% chelated copper (Cu)	
ron (Fe)	0.05%
0.05% chelated iron (Fe)	
Manganese (Mn)	0.025%
0.025% chelated manganese (Mn)	
Molybdenum (Mo)	0.005%
Zinc (Zn)	0.025%
0.025% chelated zinc (Zn)	
Derived from: Ammonium Nitrate, Potassium Nitrate	
Phosphate, Magnesium Sulfate, Boric Acid, Copper E Manganese EDTA, Ammonium Molybdate, Zinc EDTA	
Manganese EDTA, Antimonium Molybuate, Zinc EDTA	1

Hydroponic lettuce mix

Why only nitrate form?

GUARANTEED ANALYSIS	5-11-26
Total nitrogen (N)	5%
5.0% nitrate nitrogen	
Available phosphate (P ₂ O ₅)	11%
Soluble potash (K ₂ 0)	26%
Magnesium (Mg)	
6.0% water soluble magnesium (Mg)	
Sulfur (S)	8.0%
8.0% combined sulfur (S)	
Boron (B)	0.05%
Copper (Cu)	
0.015% chelated copper (Cu)	
Iron (Fe)	0.3%
0.3% chelated iron (Fe)	
Manganese (Mn)	0.05%
0.05% chelated manganese (Mn)	
Molybdenum (Mo)	0.01%
Zinc (Zn)	
	0.01370
0.015% chelated zinc (Zn)	

Ammonium toxicity

Ammonium can accumulate in the substrates under certain conditions when bacterial activity is low:

- Low temperature
- Low pH
- Saturated conditions

Leaching and adding basic fertilizer can aid if toxicity is observed

Fertilizer	NO ₃	NH ₄ ^b	Potential acidity c or basicity d	
Ammonium sulfate	0	100	2200 a	A . 1.
Urea	0	100	1680 a	Acidic
21-7-7 acid	0	100	1539 a	
21-7-7 acid	0	100	1518 a	
Diammonium phosphate	0	100	1400 a	
Ammonium nitrate	51	49	1220 a	
Monoammonium phosphate	0	100	1120 a	
18-9-18	47.7	53.3	708 a	
20-20-20	27.5	72.5	532 a	
21-5-20	62.3	37.7	407 a	
20-10-20	59.5	40.5	404 a	
20-10-20	60	40	401 a	
21-5-20	60	40	390 a	
17-5-17	70.6	29.4	106 a	
20-0-20	54	46	0	Neutral
15-0-20	76.7	23.3	38 b	
15-5-15	80	20	69 b	
15-5-15	78.7	21.3	131 b	
15-0-14	82.7	17.3	165 b	
15-0-15	86.7	13.3	221 b	
15-0-15	80.8	18.8	319 b	
Calcium nitrate	100	0	400 b	
Potassium nitrate	100	0	520 b	Dasis
Sodium nitrate	100	0	580 b	Basic

Adjusting substrate pH using nitrogen form in the fertilizer

Plugs vs finished plants: which form to use?

Is nitrate form better?

Plus:

- Nitrates are readily available to plants, not fixed by substrate
- Does not compete with uptake of positively charged ions like K,
 Ca, Mg
- Increases stress tolerance

Minus:

- Nitrates are safe to store inside plants
- Requires light energy to convert to amino acids
- Micronutrient deficiencies due to pH imbalance

Is ammonium form better?

Plus:

- Ammonium is directly incorporated into amino acids
- Results in large foliage and lush plant growth
- Not easily leached as nitrates

Minus:

- Can compete with uptake of positively charged ions (blossom end rot)
- Excess ammonium can cause phytotoxicity