
The C Shell tutorial
Taken from http://www.eng.hawaii.edu/Tutor/csh.html on August 7, 2006

What is a shell?

A shell is a program which provides a user interface. With a shell, users can type in
commands and run programs on a Unix system. Basically, the main function a shell
performs is to read in from the terminal what one types, run the commands, and show the
output of the commands.

What's so good about C Shell?

The C shell was written by Bill Joy at the University of California at Berkeley. His main
intent for writing the C shell was to create a shell with C language-like syntax.

What can one do with C Shell?

The main use of the C shell is as an interactive shell, but one can write programs using
the C shell. These programs are called shell scripts.

Features of C Shell

Some of the features of the C shell are listed here:

• Customizable environment.
• Abbreviate commands. (Aliases.)
• History. (Remembers commands typed before.)
• Job control. (Run programs in the background or foreground.)
• Shell scripting. (One can write programs using the shell.)
• Keyboard shortcuts.

Features of the shell environment

The C shell provides programming features listed below:

• Control constructs. (For example, loop and conditional statements.)
• File permissions/existence checking.
• Variable assignment.
• Built-in Variables.

The C-shell Tutorial

 2

Files for the C Shell environment customization

The C shell has three separate files which are used for customizing its environment.
These three files are .cshrc, .login, and .logout. Because these files begin with a period (.)
they do not usually appear when one types the ls command. In order to see all files
beginning with periods, the -a option is used with the ls command.

The .cshrc file contains commands, variable definitions and aliases used any time the C
shell is run. When one logs in, the C shell starts by reading the .cshrc file, and sets up any
variables and aliases.

The C shell reads the .login file after it has read the .cshrc file. This file is read once only
for login shells. This file should be used to set up terminal settings, for example,
backspace, suspend, and interrupt characters.

The .logout file contains commands that are run when the user logs out of the system.

Sample .cshrc file

#!/bin/csh

Sample .cshrc file

setenv EXINIT 'set smd sw=4 wm=2'

set history=50

set savehist=50

set ignoreeof noclobber

if ($?prompt) then

 set prompt='[\!]% '

 alias f finger -R

 alias lo logout

endif

Sample .login file
#!/bin/csh

Sample .login file

stty erase ^H intr ^C susp ^Z

echo "Welcome to Wiliki\!"

frm -s n

Sample .logout file
#!/bin/csh

Sample .logout file

echo -n "Logged out of Wiliki "

date

The C-shell Tutorial

 3

Special characters in C Shell

Some characters are special to the shell, and in order to enter them, one has to precede it
with a backslash (\). Some are listed here with their meaning to the shell.

! History substitution.

< > Output redirection.

| Pipes.

* Matches any string of zero or more characters.

? Matches any single character.

[] Matches any set of characters contained in brackets.

{ } Matches any comma-separated list of words.

; Used to separate commands.

& Also used to separate commands, but puts them in the background.

\ Quote the following character.

$ Obtains the value of the variable.

' Take text enclosed within quotes literally.

` Take text enclosed within quotes as a command, and replace with output.

" Take text enclosed within quotes literally, after substituting any variables.

Variables

Variables in C shell are defined using the internal set command. C shell supports both
regular and array variables. Some examples are given below:
set var1=a3 #sets var1's value to a3.

set var2=(a b c)

sets the array variable var2 to a b, and c.

Using variables

Variables can be used in C shell by typing a dollar sign ($) before the variable name. If
the variable is an array, the subscript can be specified using brackets, and the number of
elements can be obtained using the form $#var2 .

The existence of variables can be checked using the form $?variable . If the variable
exists, the expression evaluates to a one (true), otherwise, it evaluates to a zero (false).
Simple integer calculations can be performed by C shell, using C language-type
operators. To assign a calculated value, the @ command is used as follows:

@ var = $a + $x * $z

The C-shell Tutorial

 4

Built-in shell variables

Certain variables control the behavior of the C shell, and some of these don't require a
value. (I.e., can be set simply by using set command by itself without any value.) The
unset command can be used to unset any undesirable variables.

argv Special variable used in shell scripts to hold the value of arguments.

autologout Contains the number of minutes the shell can be idle before it
automatically logs out.

history Sets how many lines of history (previous commands) to remember.

ignoreeof Prevents logging out with a control-D.

noclobber Prevents overwriting of files when using redirection.

path Contains a list of directories to be searched when running programs or
shell scripts.

prompt Sets the prompt string.

term Contains the current terminal type.

History

If the history variable is set to a numerical value, that many commands typed previous
would be remembered in a history list. Commands from the history are numbered from
the first command being 1. To see the history, the history command is used.

Commands from the history can be recalled using the exclamation point. For example, !!
repeats the previous command, !25 re-types command number 25 from the history, and
!-2 re-types the second line previous to the current line.

Individual words from these command lines can also be retrieved using this history. For
example, !25:$ returns the last argument (word) from command 25, !!:* returns all the
arguments (all words but the first one) from the last command, and !-2:0 returns the
command (the first word) of the second line previous.

Aliasing

A shorthand can be assigned to a command or sequence of commands which are
frequently used. By assigning an alias with the alias command, one can essentially create
their own commands, and even "overwrite" existing commands. For example:
alias cc cc -Aa -D_HPUX_SOURCE

This alias definition will substitute the cc with the ANSI compiler option on an HP
System (such as Wiliki) whenever cc is typed. To undefine an alias, the unalias
command is used.

The C-shell Tutorial

 5

If the filenames used behind an alias must come before text being substituted, history
substitution can be used, as follows:

alias manl 'man \!* | less -p'

This form of the command places the arguments placed after the manl alias between the
man command and the | (pipe).

Input/Output Redirection

The input and output of commands can be sent to or gotten from files using redirection.
Some examples are shown below:
date > datefile

The output of the date command is saved into the contents of the file, datefile.
a.out < inputfile

The program, a.out receives its input from the input file, inputfile.
sort gradefile >> datafile

The sort command returns its output and appends it to the file, datafile.

A special form of redirection is used in shell scripts.

calculate << END_OF_FILE

...

...

END_OF_FILE

In this form, the input is taken from the current file (usually the shell script file) until the
string following the "<<" is found.

If the special variable, noclobber is set, if any redirection operation will overwrite an
existing file, an error message is given and the redirection will fail. In order to force an
overwrite of an existing file using redirection, append an exclamation point (!) after the
redirection command. For example for the command:

date >! datefile

The file datefile will be overwritten regardless of its existence.

Adding an ampersand (&) to the end of an output redirection command will combine
both the standard error and the standard output and place the output into the specified file.

Pipes

The output of one command can be sent to the input of another command. This is called
piping. The commands which are to be piped together are separated by the pipe character.
For example:
ls -l | sort -k 5n

The C-shell Tutorial

 6

This command takes the output of the ls -l command and puts the output of it into the
sort command.

By appending an ampersand (&) after the pipe character, one can combine the standard
error and standard output and send it to the standard input of the program receiving the
piped output.

Job control

The C shell handles job control, which allows the user to run certain programs in the
background, and recall them to the foreground when necessary. In order to place a
running process into the background, the suspend character must be set by the stty
command shown earlier. Processes may be started in the background by following the
command with an ampersand (&).

When a job is placed in the background, information for the job is shown similar to the
example given below:

[1] 15934

This specifies that the process has been placed in the background, and is job 1. In order to
recall jobs placed in the background, the fg command is used, while the bg command
places a recently stopped process into the background. The jobs command gives a list of
all processes under control of the current shell. Also, typing a percent sign (%) with the
job number brings that particular job to the foreground.

Control structures

The C shell has control structures similar to the C programming language. These are
foreach, if , switch and while. These are usually used in shell scripts.

There are two forms of the if statement. The first one has a simple command after the
expression. This simple command cannot be an alias, nor can it use statements that use
the backquote (`). The second form of the if command must have the word, then
following the expression. Several if statements can be chained together, through the use
of the else statement. This statement must have a corresponding endif statement.

if (expression) simple command

if (expression) then

 ...

else

 ...

endif

The C-shell Tutorial

 7

The switch statement can replace several if ... then statements. For the string given in the
switch statement's argument, commands following the case statement with the matching
pattern are executed until the endsw statement. These patterns may contain ? and * to
match groups of characters or specific characters.

switch (string)

 case pattern1:

 commands...

 breaksw

 case pattern2:

 commands...

 breaksw

 default:

 commands...

 breaksw

endsw

The while statement will enter the loop only if the expression evaluates to true (or non-
zero). Once within the loop, the commands within it will continue to execute until the
expression evaluates to false (zero).

while (expression)

commands...

end

The foreach statement takes an array variable and places the contents of each array
element into the loop variable for each iteration.

foreach variable (array variable or list)

...

end

The break statement breaks out of the current loop.

break

The continue command returns to the top of the current loop after testing the condition
for the loop.

continue

The shift command without arguments will shift the variable, argv down by one element.
In other words, argv[2] becomes argv[1] and so forth, with argv[1] being discarded.
With an array variable argument, the shift command performs the same operation on the
variable specified.

shift

The C-shell Tutorial

 8

shift variable

Conditional expressions

The expressions used in the while and if commands are similar to C language
expressions, with these exceptions:

=~ If the right hand side matches a pattern, (i.e., similar to filename matching,
with asterisks and question marks.) the condition is true.

!~ If the right hand side doesn't match a pattern, the condition is true.

-d $var True if the file is a directory.

-e $var True if the file exists.

-f $var True if the file is a file. (I.e., not a directory)

-o $var True if the file is owned by the user.

-r $var True if the user has read access.

-w $var True if the user has write access.

-x $var True if the user has execute access.

-z $var True if the file is zero-length.

Command line shortcuts

Here are a few keys which may be pressed to perform certain functions.

<escape>

The escape key preceded by a partial command or filename will attempt to
complete the filename. If there are more than one filename matching, the common
letters are completed, and the C shell beeps.

Control-D

When typed after a partial filename, C shell gives a list of all matching filenames
or commands.

Control-W

Erases over the previous word.

Shell scripting

Shell scripts are programs written in C shell. They are plain text files which can be edited
and created by any text editor. There are a few guidelines to follow, however.

1. Create a file using any text editor. The first line must begin with the string
#!/bin/csh.

The C-shell Tutorial

 9

2. Give yourself execute permission with the chmod u+x filename command.
3. You can run the shell script by simply typing filename as if it were a regular

command.

The shell script file can contain any commands which can be typed in, as well as the
control structures described above.

Shell script arguments

When you write a shell script, a special array variable argv is created with the arguments
entered. For example, if the shell script tester is created, and is run by typing it with the
arguments as shown, tester one two jump , the array variable argv will contain "one",
"two", and "jump" in its three elements.

• Go to the introduction page.
• Go to the UH CoE WWW Server home page.

Author: Ben Yoshino (ben@wiliki.eng.hawaii.edu)

Comments, Questions? | E-mail: webmaster@wiliki.eng.hawaii.edu

Last updated on
Copyright © 2001 University of Hawai`i, College of Engineering, Computer Facility
All rights reserved.

