
Unix Shell Scripts
Norman Matloff

July 15, 2002

1 Introduction
In previous discussions we have talked about many of the facilities of the C shell, such as
command aliasing, job control, etc. In addition, any collection of csh commands may be
stored in a file, and csh can be invoked to execute the commands in that file. Such a file
is known as a shell script file. The language used in that file is called shell script
language. Like other programming languages it has variables and flow control statements
(e.g. if-then-else, while, for, goto).

In Unix there are several shells that can be used, the C shell (csh and its extension, the T
C shell tcsh), the Bourne Shell (sh and its extensions the Bourne Again Shell bash and
the highly programmable Korn shell ksh) being the more commonly used.

Note that you can run any shell simply by typing its name. For example, if I am now
running csh and wish to switch to ksh, I simply type ksh, and a Korn shell will start up
for me. All my commands from that point on will be read and processed by the Korn
shell (though when I eventually want to log off, exiting the Korn shell will still leave me
in the C shell, so I will have to exit from it too).

2 Invoking Shell Scripts
There are two ways to invoke a shell script file.

2.1 Direct Interpretation

In direct interpretation, the command

csh filename [arg ...]

invokes the program csh to interpret the script contained in the file `filename'.

2.2 Indirect Interpretation

In indirect interpretation, we must insert as the first line of the file

#! /bin/csh

or

#! /bin/csh -f

(there are situations in which this is not necessary, but it won't hurt to have it), and the
file must be made executable using chmod (see previous discussion). Then it can be
invoked in the same way as any other command, i.e., by typing the script file name on the
command line.

The -f option says that we want fast startup, which it will achieve by not reading or
executing the commands in .cshrc Thus for example, we won't have the `set' values for
shell variables or the aliases from that file, but if we don't need them, this will be much
faster (if we need a few of them, we can simply add them to the script file itself).

3 Shell Variables
Like other programming languages the csh language has variables. Some variables are
used to control the operation of the shell, such as $path and $history, which we discussed
earlier. Other variables can be created and used to control the operation of a shell script
file.

3.1 Setting Variables

Values of shell variable are all character-based: A value is formally defined to be a list of
zero or more elements, and an element is formally defined to be a character string. In
other words, a shell variable consists of an array of strings.

For example,

 set X

will set the variable $X to have an empty list as its value. The command

 set V = abc

will set V to have the string `abc' as its value. The command

 set V = (123 def ghi)

will set V to a list of three elements, which are the strings `123', `def' and `ghi'.

The several elements of a list can be treated like array elements. Thus for V in the last
example above, $V[2] is the string `def'. We could change it, say to `abc', by the
command

 set V[2] = abc

3.2 Referencing and Testing Shell Variables

The value of a shell variable can be referenced by placing a $ before the name of the
variable. The command

 echo $path

will output the value of the variable $path. Or you can access the variable by enclosing
the variable name in curly brace characters, and then prefixing it with a $. The command

 echo ${path}

would have the same result as the last example. The second method is used when
something is to be appended to the contents of the variable. For example, consider the
commands

 set fname = prog1
 rm ${fname}.c

These would delete the file `prog1.c'.

To see how many elements are in a variable's list, we prefix with a # then a $. The
command

 echo $#V

above would print 3 to the screen, while

 echo $#path

would reveal the number of directories in your search path.

The @ command can be used for computations. For example, if you have shell variables
$X and $Y, you can set a third variable $Z to their sum by

@Z = $X + $Y

4 Command Arguments
Most commands have arguments (parameters), and these are accessible via the shell
variable $argv. The first parameter will be $argv[1], the second $argv[2], and so on. You
can also refer to them as $1, $2, etc. The number of such arguments (analogous to argc in
the C language) is $#argv.

For example, consider the following script file, say named Swap:

#! /bin/csh -f

set tmp = $argv[1]
cp $argv[2] $argv[1]
cp $tmp $argv[2]

This would do what its name implies, i.e. swap two files. If, say, I have files x and y, and
I type

Swap x y

then the new contents of x would be what used to be y, and the new contents of y would
be what used to be x.

5 Language Constructs
The shell script language, like other programming languages, has constructs for
conditional execution (if-then-else; while), iterative execution (for loop), a switch
statement, and a goto statement:

1. if-then-else

The syntax of the if-then-else construct is

 if (expr) simple-command

or

 if (expr) then
 commandlist-1
 [else
 commandlist-2]
 endif

The expression expr will be evaluated and according to its value, the commandlist-1 or
the commandlist-2 will be executed. The portion of the construct enclosed in '[' and ']' is
optional.1

As an example, suppose we write a shell script which is supposed to have two
parameters, and that the code will set up two variables, `name1' and `name2' from those
two parameters, i.e.

 set name1 = $argv[1]
 set name2 = $argv[2]

(which presumably it would make use of later on). But suppose we also wish to do error-
checking, emitting an error message if the user gives fewer than two, or more than two,
parameters. We could use the following code

 if ($#argv <> 2) then
 echo "you must give exactly two parameters"
 else
 set name1 = $argv[1]
 set name2 = $argv[2]
 endif

2. while

The syntax of while loop construct is

 while (expr)
 commandlist
 end

The commandlist will be executed until the expr evaluates to false.

3. foreach

The syntax of foreach loop construct is

 foreach var (worddlist)
 commandlist
 end

The commandlist is executed once for each word in the wordlist, and each time the
variable var will contain the value of that word. For example, the following script can
search all immediate subdirectories of the current directory for a given file (and then quit
if it finds one):

#! /bin/csh -f

 set f = $1
 foreach d (*)
 if (-e $d/$f) then
 echo FOUND: $d/$f
 exit(0)
 endif
 end
 echo $f not found in subdirectories

For example, say I call this script FindImm, and my current directory consists of files s, t
and u, with s and t being subdirectories, and with t having a file x. Typing

FindImm x

would yield the message

FOUND: t/x

Here is how it works: In the line

 foreach d (*)

the `*' is a wild card, so it would expand to a list of all files in my current directory, i.e.
the list (s t u). So, the for-loop will first set d = s, then d = t and finally d = u.

In the line

 if (-e $d/$f) then

the -e means existence; in other words, we are asking if the file $d/$f exists. If we type
`FindImm x' as in the example above, $f would be x, and $d would start out as s, so we
would be asking if the file s/x exists (the answer would be no).

4. switch

The switch command provides a multiple branch similar to the switch statement in C.
The general form of switch is:

 switch (str)
 case string1:
 commandlist1
 breaksw
 case string2:
 commandlist2
 breaksw
 default

 commandlist
 endsw

The given string str is successively matched against the case patterns. Control flow is
switched to where the first match occurs. As in file name expansion, a case label may be
a literal string, or contain variable substitution, or contain wild-card character such as *,?,
etc.

5. Goto

The goto command provides a way to branch unconditionally to a line identified by a
label.

goto lab

where lab is a label on a line (by itself) somewhere in the script in the form

lab:

6 Examples

6.1 A Shell Script For Deleting Files

This code, which we will call Del, will delete files like rm does, prompting for your
confirmation for each file to be deleted, including directory files (which the -i option of
rm won't do).

#! /bin/csh -f

 foreach name ($argv)
 if (-f $name) then
 echo -n "delete the file '${name}' (y/n/q)?"
 else
 echo -n "delete the entire directory '${name}' (y/n/q)? "
 endif
 set ans = $<
 switch ($ans)
 case n:
 continue
 case q:
 exit
 case y:
 rm -r $name
 continue
 endsw
 end

(Before reading further, try this program yourself. Set up a test directory, with several
files in it, at least one of which is a subdirectory, with at least one file there. Then type
`Del *'.)

The line

 if (-f $name) then

tests to see if the file whose name is in $name is an ordinary file, as opposed to a
directory file.

The -n option of echo tells the shell not to print the newline character, so that our answer,
y/n/q, will be on the same line.

In the line

 set ans = $<

the symbol `$ < ' means the input from the keyboard.

The keyword `continue' means to go to the top of the enclosing loop.

The -r option of the rm command means that if an argument is a directory, then remove
that directory, and all the files (and subdirectories, etc.) within it.

7 Further Information
There are several books dealing with the C shell, but you should first read the man page
for csh. You will find all kinds of features not mentioned here.

Footnotes:

1This is standard notation in the software world, so remember it.

File translated from TEX by TTH, version 2.88.
On 15 Jul 2002, 16:42.

