
ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

1 of 7 8/23/2007 2:29 PM

Special: Strategies to Secure Your Mobile Workforce

Go to network sites 6Go to network sites Search

Grep this
Unix Insider 11/29/99

Using grep, fgrep, and egrep to search for strings of words

The grep utility, which allows files to be searched for strings of words, uses a syntax similar to the

regular expression syntax of the vi, ex, ed, and sed editors. grep comes in three flavors, grep , fgrep , and

egrep , all of which I'll cover in this article.

The name grep is derived from the editor command g/re/p , which literally translates to "globally search

for a regular wxpression and print what you find." Regular expressions are at the core of grep , and I'll

cover them after a brief description of some of the utility's command options.

The simplest grep command is grep (search pattern) (files list) , as in:

 grep hello *

The output of this command might be something like this:

 $ grep hello *
 story.txt: so I said hello and she smiled back
 intro.txt: use the hello.c program as an example of C programming
 $

grep is case sensitive, so in order to change the search to include "hello," "Hello," or "HELLO," use the -y

or -i option. Earlier versions of grep used -y , and later versions use -i . -y is now considered obsolete,

although some versions of grep do support both. In the following example, more hellos show up because

the search is case independent.

 $ grep -i hello *
 story.txt: so I said hello and she smiled back
 story.txt: I could hear my echo, "HELLO."
 intro.txt: use the hello.c program as an example of C programming
 hello.c: printf("Hello, world. \n");
 $

This command searches all files in the current directory and prints the file name and the line containing
the string "hello" for any files that contain that string.

The output of grep varies depending on whether you're searching one or several files. If only one file is

named on the command line, the output doesn't include the file name, as in the following example:

 $ grep -i hello hello.c
 printf("Hello, world. \n");
 $

The one-file rule applies whether you use a wild card in your file list or not. If hello.c were the only file in

the current directory, using a wild card to locate the file would still produce an unnamed file output. In
the following example, the user is searching for any C files containing "hello." There is only one C file in
the directory, so the output is identical to the previous example.

 $ grep -i hello *.c
 printf("Hello, world. \n");
 $

I don't know of a grep that has a work-around for this behavior, but you could use the -l option instead,

ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

2 of 7 8/23/2007 2:29 PM

which prints the file name only and not the line containing the string. At least you would know the name
of the file that contained the string.

 $ grep -il hello *.c
 hello.c:
 $

The -l option can be used to extract a list of files containing the string. The file name is printed only

once, even though the string may appear in multiple lines within that file. In the following example,
story.txt appears only once, even though it contains more than one "hello."

 $ grep -il hello *
 hello.c:
 intro.txt:
 story.txt:
 $

The -l option suppresses most of the other output options from grep . On the other hand, the -n option

will print a line number as well as the text, as in the following example:

 $ grep -in hello *
 hello.c:7: printf("Hello, world. \n");
 intro.txt:44: use the hello.c program as an example of C programming
 story.txt:110: so I said hello and she smiled back
 story.txt:187: I could hear my echo, "HELLO."
 $

The -v option outputs the complement of the search, i.e., all lines not containing the requested search

pattern.

 $ grep -iv hello intro.txt
 You will be able to get more practice if you
 at its simplest
 $

The -c option prints only a count of lines matched. It also has the interesting and useful side effect of

listing all the files it searches, not just the successful hits.

 $ grep -ic hello *
 data.txt:0
 hello.c:1:
 intro.txt:1
 intro2.txt:0
 story.txt:2
 $

Some versions of grep come with -r as an option, which prompts grep to search recursively through

subdirectories. The default behavior is to search only one directory, so the -r option, as provided in GNU

and other implementations of grep , is the exception rather than the rule.

Going wild with grep

So far I've covered some of the input and output options, but the real power of grep is in its search

pattern, which uses regular expressions. grep can match simple strings, as we saw in the "hello" example

we played with above; but it can also use a variety of wild cards and special symbols to create a regular
expression to search for more complex strings.

I will begin with some of the simpler characters in a regular expression. A ̂ (caret) character means the

start of a line and a $ (dollar) character means the end of one.

The wild cards used by grep frequently clash with the special symbols that the shell uses, so the usual

practice is to enclose complex search strings within single quotes. The two following examples would
match any case version of "hello" at the start and end of a line, respectively.

 $ grep '^hello' *

 $ grep 'hello$' *

The dot or period character (.) will match any single character. For example, the following would match

ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

3 of 7 8/23/2007 2:29 PM

any character followed by "ello," as in "aello," "bello," "cello," and so on all the way through "zello." Odd
combinations, like "1ello" and "?ello," would also be included; any combination of one initial character
followed by "ello" is valid. The dot does not match the beginning or end of a line; therefore, "ello" at the
start of a line would not be matched.

 $ grep '.ello' *

Optional characters can be enclosed in square brackets ([]) causing any of the enclosed characters to

be matched. The following search string would match "hello," "cello," or "jello."

 $ grep '[hcj]ello' *

Optional characters can also be specified by using a range consisting of two characters separated by a
hyphen. The following example would match "bay," "cay," or "day."

 $ grep '[b-d]ay' *

An optional character or range of characters can be preceded by a caret (̂) to invert the sense of the

match. The following would match any character proceeded by "ay" except the combinations "bay,"
"cay," and "day."

 $ grep '[^b-d]ay' *

Note that options and ranges represent a match of a single character.

Any single character match (including a single character matched by a option/range specification) can be
repeated by using the asterisk character (*). An asterisk following a single character means "zero or

more occurrences" of the preceding match. The following search requests any line containing "hello"
followed by "dolly" where the words are separated by zero or more spaces. Note that the asterisk follows
the space after "hello" and therefore applies to the space character.

 $ grep 'hello *dolly' *

This search would match any of the following, without regard to the number of spaces between the
words.

 hellodolly
 hello dolly
 hello dolly

The asterisk can be applied to an option or range. Following search matches "c" and "t" with any number
of vowels (or no vowels) in between.

 $ grep 'c[aeiou]*t' somewords.txt
 cat
 coat
 coot
 cot
 cout
 cut
 ct
 $

Extending grep

At this point grep and egrep depart from one another. egrep stands for extended grep . The POSIX 1003.2

standard defined a set of regular expression characters, called modern, extended, or full regular
expressions. The regular expressions I cited earlier are frequently called older or basic regular
expressions. There is some overlap between the two, and recent versions of grep can be made to behave

like egrep by using the -E option.

The egrep utility uses extended regular expressions, with a useful one being the plus (+) character, which

works like the asterisk (*) but means "one or more" rather than "zero or more." Using egrep in the above

example with a + instead of an * would cause the search to exclude "ct" because it doesn't contain one or

more vowels.

 $ egrep 'c[aeiou]+t' somewords.txt
 cat

ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

4 of 7 8/23/2007 2:29 PM

 coat
 coot
 cot
 cout
 cut
 $

If you use grep to achieve the same results, the search pattern becomes clumsier. The next example

asks for "c," followed by any vowel, followed by zero or more occurrences of any vowel, followed by "t."

 $ grep 'c[aeiou][aeiou]*t' somewords.txt
 cat
 coat
 coot
 cot
 cout
 cut
 $

The egrep utility also adds a question mark (?), meaning zero or one occurrence, as another version of

multiple occurrence matching.

 * = zero or more occurrences
 + = one or more occurrences
 ? = zero or one occurrence

The vertical bar (|) creates an "or" condition between two possible search patterns. In the following

example, egrep searches for "c," followed by one or more vowels, followed by "t," or for "p" followed by

one or more vowels, followed by "l." Because the search string doesn't specify that the word must end
after the closing "t" or "l," this example has matched "paula" and "paella," as well as words that end in
"l."

 $ egrep 'c[aeiou]+t|p[aeiou]+l' somewords.txt
 cat
 coat
 coot
 cot
 cut
 cet
 cit
 pal
 paella
 paul
 paula
 peal
 peel
 pool
 $

You can fudge this with grep by entering multiple search patterns and inserting newlines in between the

patterns. This can be used with egrep and fgrep as well, but I'm introducing it here simply to highlight the

difficulty of imitating egrep with grep when it would be simpler to use egrep .

In the following example, the first part of the command is entered on one line, and then Enter is pressed
while the single quotes are still open. The shell prompts for additional input and continues to accept lines
until the closing quote appears. Each individual line represents a separate search string to grep . This trick

is useful with any version of grep .

 $ grep 'c[aeiou][aeiou]*t
 > p[aeiou][aeiou]*l' somewords.txt
 cat
 coat
 coot
 cot
 cut
 cet
 cit
 pal
 paella
 paul
 paula

ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

5 of 7 8/23/2007 2:29 PM

 peal
 peel
 pool
 $

With egrep , simple parentheses can be used to group sections of a search pattern together. In the

following example, the search pattern will match any of the words shown in the result list. The
parentheses group "[Ss]ome" and "[Aa]ny" are optional strings, followed by "one."

 $ egrep '([Ss]ome|[Aa]ny)one' somewords.txt
 someone
 Someone
 anyone
 Anyone
 $

A single character can be modified by a bound, which consists of one or two comma-separated numbers,
with the first number specifying the minimum number and the second specifying the maximum. egrep

uses curly braces ({}) to specify a bound, while grep uses back-slashed curly braces (\{\}). These

example matching strings of characters should clarify what I mean:

 egrep grep meaning
 [a-z]{2,4} [a-z]\{2,4\} Two through four characters
 [a-z]{4} [a-z]\{4\} Exactly four characters
 [a-z]{4,} [a-z]\{4,\} Four or more characters
 [a-z]{,4} [a-z]\{,4\} Zero through four characters

Finally, the escape or backslash (\) removes the special meaning of a character and reverts it to a

standard character. Some simple examples are illustrated below. Note that the backslash itself has a
special meaning, so when you want to search for it, it must be escaped (\\).

 character matches
 . Any character
 \. A period
 $ End of line
 \$ A dollar sign
 * Zero or more occurrences of the preceding expression
 * An asterisk
 \ Nothing -- is an escape character
 \\ A backslash
 | Create an "or" branch between two expressions
 \| A vertical bar

The definition of the escape character dictates that, if you escape a character that doesn't need to be
escaped, the escape is ignored and the character is treated as if you had entered it on its own. If you
place \a in a search pattern, it's the same as a, because the letter didn't need to be escaped in the first

place.

It can be hard to remember all of the grep and egrep characters that have a special meaning, and regular

expressions are unfortunately far from regular. You have already seen that curly braces can be escaped
in grep and, when escaped, acquire a special meaning. The same is true for parentheses and angle

brackets. The following characters have special meanings in grep or egrep :

 In egrep:
 | ^ $. * + ? () [{ } \
 In grep:
 ^ $. * \(\) [\{ \} \

Because regular expressions are used by vi, ex, sed, and ed, it's worth mentioning that these three
editors use the following special characters:

 ^ $. * \(\) [\ \< \>

As you can see, you need to be aware of the version of grep with which you're working before you use

the backslash indiscriminately.

The last collection of grep or egrep search pattern options is in fact a simple shorthand for describing a

class of characters.

ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

6 of 7 8/23/2007 2:29 PM

 [:alpha:] Any alphabetic character
 [:lower:] Any lowercase character
 [:upper:] Any uppercase character
 [:digit:] Any digit
 [:alnum:] Any alphanumeric character (alphabetic or digit)
 [:space:] Any white space character (space, tab, vertical tab)
 [:graph:] Any printable character, except space
 [:print:] Any printable character, including the space
 [:punct:] Any punctuation (i.e., a printable character that is not white space or alphanumeric)
 [:cntrl:] Any nonprintable character

You may use these inside a range option. The class name includes the left and right brackets, so these
must be doubled inside a range, as in the following example, which searches for any string of 10 digits.
Note the apparently doubled brackets. Actually, this is an option of [:digit:] inside the square brackets

for a range. This could also be written [0-9] .

 $ egrep '[[:digit:]]{10}' somenumbers.txt
 1234554321
 $

The following listing offers some example search patterns that return the line numbers containing the
matches. Pattern 1 -- parentheses, followed by three digits, followed by closing parentheses, followed by
three digits, a hyphen, and four digits -- searches for phone numbers.

Pattern 2 searches for zip codes -- five digits followed by zero or one hyphen, followed by zero to four
digits -- either with or without the following hyphen and four digit extension.

Pattern 3 searches for lines containing P.O. Box number addresses by using a case-independent search
for "p," followed by zero or one period, then zero or more spaces, zero or one period and one or more
spaces, and finally "box" or "drop." This should match most of the styles of data entry for a P.O. Box,
including "PO Box," "PO BOX," "P.O. Box," "P O Box," "P. O. Drop," and so on.

Pattern 4 matches the word "cat" by searching for it where it's preceded by a beginning or line, or one or
more spaces and followed by one or more spaces, or an end of line. This search will not match
"concatenate."

 1. egrep -n '\([0-9]{3}\)[0-9]{3}\-[0-9]{4}' somenumbers.txt
 2. egrep -n '[0-9]{5}\-?[0-9]{0,4}' somenumbers.txt
 3. egrep -in 'p\.? *o\. +(box|drop)' someaddresses.txt
 4. egrep -n '(^| +)cat(+|$)' sometext.txt

And, finally, fgrep

At this point you might be wondering how fgrep fits in with the others. fgrep is essentially grep (or egrep)

with no special characters. If you want to search for a simple string without wild cards, use fgrep . The

fgrep version of grep is optimized to search for strings as they appear on the command line, so it doesn't

treat any characters as special. You could use fgrep in the above examples to more efficiently search for

the plain string "hello," and also to search for strings that contain special characters used in their usual
sense. For example, if you wanted to search for "hello" at the end of a sentence, you would want to
search for "hello." (hello followed by a period). The dot or period is a special character in grep or egrep ,

but fgrep simply treats a period as a period and not as a special character.

 $ fgrep 'hello.' *

I have two final notes about searching for multiple strings. Multiple search patterns can be placed on a
single command line by using the -e option. The following example will search for "cat" or "dog":

 $ fgrep -e 'cat' -e 'dog' *

You can also list search patterns in a file and name the file on the command line with the -f option. The

example below is a file named searchfor.txt that contains a list of search patterns for the singular or

plural of various animals. The question mark at the end of each animal name applies to the preceding "s"
and means zero or one occurrence of that letter.

 dogs?
 cats?
 ducks?

ITworld.com - Grep this http://www.itworld.com/Comp/2378/swol-1199-unix101/pfindex.html

7 of 7 8/23/2007 2:29 PM

 snakes?

To use this file to search another list of files, name it on the command line instead of a search pattern.
The egrep utility will search for all the possible strings listed in searchfor.txt :

 $ egrep -nf searchfor.txt *

www.itworld.com open.itworld.com security.itworld.com smallbusiness.itworld.com
storage.itworld.com utilitycomputing.itworld.com wireless.itworld.com

Contact Us About Us Privacy Policy Terms of Service Reprints

CIO Computerworld CSO GamePro Games.net IDG Connect IDG World Expo Infoworld ITworld JavaWorld
LinuxWorld MacUser Macworld Network World PC World Playlist

Copyright © 2007 Computerworld, Inc. All rights reserved

Reproduction in whole or in part in any form or medium without express written permission of Computerworld Inc. is prohibited.
Computerworld and Computerworld.com and the respective logos are trademarks of International Data Group Inc.

