
Note: you can find all slides of this tutorial under:

http://www.cs.queensu.ca/~acmteam/advunix.pdf

The introductory Unix tutorial can be found under:

http://www.cs.queensu.ca/~acmteam/unix.pdf

Advanced Unix Tutorial

In this tutorial, you will learn about:

• Common Unix tools (grep, sed, awk, tr, etc.)

• Environment variables

• Csh/tcsh basics

• Csh/tcsh Shell scripts

1

More Useful Commands

grep/egrep - searches lines for patterns using regular expressions.

grep [options] [pattern] [file ...]

E.g. To print all lines that contain double in all *.java files:

grep double *.java

Useful options:

-i Case-insensitive search

-v Reverse search (print all lines that do not contain the pattern)

-n Add line number to the lines found

E.g. To print all lines that do not contain system (case-insensitive)
in *.java:

grep -iv system *.java

2

Regular Expressions — a string that represents multiple instances

It can be used with egrep for pattern search. (man -s 5 regexp)

Examples: egrep "a[x-z]c" file1 file2

Pattern Matches

a.c a[any single character]c, e.g. abc, a1c, a c.

a[xyz]c or a[x-z]c axc, ayc, and azc only

a[^xyz]c a[any single character but x, y, or z]c

ab*c a[0 or more b]c, e.g. ac, abc, abbbc

ab+c a[1 or more b]c, e.g. abc, abbbc

^abc abc only at the beginning of a line

abc$ abc only at the end of a line

a(bc|de)f abcf and adef

myarray\[.+\] myarray[anything that has 1 or more character]

3

cut — select a list of columns or fields from one or more files

Fields and columns start at 1.
Example: (myfile is a file of abcdefghijklmnopqrstuvwxyz)

• To see only the second and forth character of file myfile:

cut -c2,4 myfile (output = bd)

• For characters from 1st to 3rd, 10th to 12th, 24th to the end:

cut -c-3,10-12,24- myfile (output = abcjklxyz)

• Cut can also display fields split by a delimiter (separator):

echo "12#34#567#8" | cut -d"#" -f2-3 (34#56)

• Find out who is logged on, but list only usernames:

who | cut -d " " -f1

4

tr - translate characters

tr copies standard input to standard output, substituting or
deleting specified characters, for example:

tr A-LM-Z a-z < file1 > file2

creates file2 as a copy of file1, with all uppercase letters
translated to the corresponding lowercase ones.

tr str1 str2 translates str1 chars to the corresponding str2

tr -s str1 str2 squeezes repeated chars in str1 to 1 char

tr -d str1 removes all chars in str1

There are more sophisticated uses of tr which are very useful, e.g.,
tr -s ’[:blank:]’ ’[\012*]’ changes each set of whitespaces to
a single newline (\012 is newline in octal).

5

The Shell

• The user interface of Unix is the shell

• Some UNIX workstations offer GUIs to enhance the user
interface

• Within a window the shell remains the control center

• Several shells are available: sh (Bourne Shell), ksh (Korn
Shell), csh, and tcsh

• We will be looking at tcsh (tcsh is an enhanced version of csh),
and we will use the word csh and tcsh interchangeably

6

Environment Variables

• Unix keeps user-defined shell environment parameters (user
info and preferences) in environment variables

• Environment variables constitute the environment of the shell

• HOME — variable representing your home directory, e.g.,
printenv HOME or echo $HOME shows your home directory

• PATH — the list of directories that form the command search
path, e.g.

setenv PATH $HOME/bin:$PATH (add to .cshrc file)

tells the shell to look in the users home directory under the bin
directory for commands

• Use printenv to see your environment variables

7

Environment Variables and Shell Variables

• Shell variables are variables for a particular shell. Unlike
environment variables, shell variables won’t be inherited to
shells opened by the current shell

• Usually, environment variable names consist of uppercase
letters, and shell variables consist of lowercase letters

Environment Variables Shell Variables

Assignment setenv name content set name=content

or define E.g. setenv FOO bar E.g. set foo=bar

Remove unsetenv name unset name/pattern

• Trying to access an undefined variables (except for unset) will
give you an error.

8

Environment and Shell Variables (cont’d)

• Shell variables can have arrays of 1D. Parentheses must be
used to enclose the contents, which are separated by spaces:

set myarray=(this is an array)

• Use square brackets to access element(s) of the array (1-based)

• To see all defined shell variables, use set

Some environment/shell variables defined automatically:

$PATH or $path Directories to search for commands

$HOME or $home User’s home directory

$noclobber If defined, prevents redirections (>) to overwrite files

$prompt Control the appearance of the prompt

$status The exit value of the previous command

9

Variable Operation Description

$name[i] Access the ith element

E.g. echo $myarray[2] Outputs is

E.g. set $myarray[2]=was Changes is to was

$name[i-j] Access the ith thru jthelement

E.g. echo $myarray[2-3] Output was an

E.g. echo $myarray[2-] Output was an array

$#name (shell var only) Show the number of elements

$#myarray Output 4

$?name Check if variable name is defined

E.g. echo $?myarray Output 1

shift name (shell var only) Remove the first element of an array

E.g. shift myarray $myarray becomes (was an array)

10

Shell Variables — Arithmetic Operations

• Arithmetic operation must be performed using @:

@ var=expr (note the space after @)
@ var[n]=expr

• Only operations involving arithmetic needs @, for other
operations use set

• Integers only (no floating point numbers)

Examples:

@ i = 10 (same as set i=10)
@ j = $#path / 2 (note the spaces around /)
@ myintarray[$j] = $j + 4

@ x += 3

@ i++

11

Arithmetic and bitwise logical operators

+ plus

- minus

* multiplication

/ division

% modulus

! not

& bitwise and

| bitwise or

^ bitwise exclusive-or

<< left-shift

>> right-shift

Note that an operator symbol must be surrounded by space:

@ a = $b % $c

12

Shell Scripting Intro

• The shell is not only a command interpreter, it also defines a
simple programming language

• A program written in this language is called a shell script

• Shell scripts can save you a lot of time if you find yourself
repeating commands over and over again

• Shell scripts are like batch files in DOS

• You can also type out all lines in a shell script at the prompt to
do the same thing as the script

13

Shell Script Basics

• A shell script file starts with a line like this:
#!/usr/local/bin/tcsh

It indicates which command is used to interpret this script

• Consists of lines of commands

• Comments are preceded by #

• If the execution of a script results in an error, script execution
is aborted if the command is built-in or skipped if the offending
command isn’t built-in

• A shell script file must have its readable and executable flags
set in order to be run directly:
chmod a+rx myshellscript (readable/executable for all)
myshellscript (execute this script if it is in the path)

14

Passing Arguments

• Arguments can be passed to a tcsh script:
./myshellscript a1 b2 c3

• Arguments are stored in the array variable $argv

• Alternatively, $1 represents the first argument, $2 the second
etc.

• $* is equivalent to $argv (which is a1 b2 c3)

• $0 is the command that runs the current script file (which is
./myshellscript)

• $argv[0] is undefined

15

foreach loop

foreach allows one to execute a series of lines of commands for
each of the element in a list:

foreach index variable name (element element ...)

command (can be break or continue)
...

end

#!/bin/csh

list all files end with .java and .c

foreach file (*.java *.c)

echo $file

end

16

if statement

if (condition) then

...
else if (condition) then

...
else

...
endif

Examples of conditions (also called expressions)

($1 == $2) if the first arg is same as the second arg

!($1 > $2) not ($1 > $2)

(-f file) if file is a file (not directory)

(-d file) if file is a directory

17

Relational Operators

== equal

!= not equal

> numerical greater than

< numerical less than

>= numerical greater than or equal to

<= numerical less than or equal to

=~ string match (right side can be a pattern)

!~ not a string match

Example
if ($1 =~ m*) echo "$1 starts with m"

18

Expressions

Logical Operators:

|| logical or

&& logical and

! logical not

Some file conditions, e.g. if (-r filename) ...

(-r filename) True if filename is readable

(-w filename) True if filename is writable

(-x filename) True if filename is executable

(-e filename) True if filename exists

(-o filename) True if the user owns filename

19

#!/bin/csh

Find the location of given command in the path

Simulate the "which" command.

if ($#argv != 1) then

echo "Usage: $0 command"

exit 1

endif

foreach dir ($path)

set file=$dir/$1

if (-f $file && -x $file) then

echo "Found: $file"

exit 0

endif

end

echo $1 not found

exit 1

20

switch statement

• similar to C or Java’s switch

Example

#!/bin/csh

append $1 to $2, or append standard input to $1

switch ($#argv)

case 1:

cat >> $argv[1]

breaksw

case 2:

cat >> $argv[2] < $argv[1]

breaksw

default:

echo ’usage: append [from] to ’

endsw

21

while loop

• similar to while loop in C or Java

• break and continue can be used

#!/bin/csh

Generate output files from input files

Good for testing your program

set max=8

set i=1

while ($i <= $max)

set infile=myInputFile.$i

set outfile=myOutputFile.$i

echo "To run with $infile, output to $outfile"

java prog < $infile >&! $outfile # forces overwrite

@ i++

end

22

Quotes

• There are three kinds of quotes: single ’, double ", and back ‘

• Single and double quotes can be used to enclose a string

• Single quotes don’t expand the string inside (i.e. leave the
string as it is), double quotes do (i.e. return the contents of
variables):
echo ’$user’ outputs $user

echo "$user" outputs ttang

• Backquotes evaluate the string enclosed:
echo "the command more is at ‘which more‘" outputs
the command more is at /usr/bin/more

23

awk and sed

• They are standard Unix commands for text processing that can
have scripts

• Nowadays people usually use Perl for text processing

• They are handy for simple operations:

awk ’{print $1$3, $NF} myfile’

prints the 1st and 3rd (no space in between), and the last field
of each line in myfile; and

sed "s/foo/bar/g;s/if/in case/" myfile

changes all occurrences of “foo” to “bar”, and only the first
occurrence of “if” to “in case”

24

Example - Simulate move in DOS (mv *.txt *.doc doesn’t work)

#!/bin/csh

if ($#argv < 3) then

echo "Usage: $0 search_pat replace_pat file ..."

echo "Example: $0 ’\.txt"’$’"’ ’\.doc’ "’*.txt’

exit

endif

set search=$1

set replace=$2

foreach file ($argv[3-])

set newname=‘echo $file | sed "s/$search/$replace/"‘

if ($file != $newname) then

echo "Changing $file to $newname"

mv $file $newname

endif

end

25

Alias Substitution

• Alias allows you to redefine existing command name with a
name of your own. Examples:

alias h history use h as an abbreviation of history

alias dir ls use dir as an abbreviation of ls

alias ls ’ls -F’ the switch -F will be used whenever ls is used

alias rm ’rm -i’ confirmation needed before removing a file

• Use unalias to remove an alias, e.g., unalias ls

• Use a backslash before an aliased command to temporarily
unalias that command: \rm * will delete all files in the current
directory without asking (dangerous, make sure you know what
you are doing)

• Aliases are usually put in the file ~/.cshrc

26

Configuring your tcsh

• The file ~/.cshrc contains your configuration of csh/tcsh

• Some content of .cshrc may be depended to the system
configuration. Your current .cshrc is probably written by your
system administrator.

• You can put your own configuration in some file, say
~/.mycshrc, and put the line:

source ~/.mycshrc

at the end of .cshrc to tell csh to load your configuration file

• The command source can also be used in the shell

27

Final Words

• We have introduced the basics of Unix and shell programming

• For serious shell programming, C shell is not the best choice:

– for instance, C shell does not have subroutines

– we suggest Bourne shell (sh/bash), or Korn shell (ksh)

• For serious text processing, Perl is the language to use

– it is heavily used in WWW programming

28

