
Guide 3
Version 3.0

Writing C-shell scripts
The C-shell is the program which interprets the commands that you type at
the keyboard when you use the Unix operating system. It is possible to put C-
shell commands into a file, called a script. This course teaches you how to
write these C-shell scripts. It assumes that you are an experienced user of
Unix, and are familiar with the contents of the Information Technology Service
document Guide 2: Further UNIX.

Document code: Guide 3
Title: Writing C-shell scripts
Version: 3.0
Date: May 2007
Produced by: University of Durham Information Technology Service

Copyright © 2007 University of Durham Information Technology Service

Conventions:
In this document, the following conventions are used:
• A typewriter font is used for what you see on the screen.
• A bold typewriter font is used to represent the actual characters you type at

the keyboard.
• A slanted typewriter font is used for items such as filenames which you should

replace with particular instances.
• A bold font is used to indicate named keys on the keyboard, for example,

Esc and Enter, represent the keys marked Esc and Enter, respectively.
• A bold font is also used where a technical term or command name is used in

the text.
• Where two keys are separated by a forward slash (as in Ctrl/B, for example),

press and hold down the first key (Ctrl), tap the second (B), and then release
the first key.

Contents

1. Introduction..1
1.1 The aim of this course..1
1.2 Before you begin..1
1.3 Teaching yourself...1
1.4 Further information about UNIX ..1

2. What is the shell? ..1

3. Simple shell scripts...2
3.1 Getting started ...2
3.2 What is a shell script? ..2
3.3 Using parameters to pass information to a shell script3
3.4 Making a shell script executable ..4
3.5 Storing shell scripts in a subdirectory ..5

4. Parameters, shell variables and ‘here documents’ ..7
4.1 Getting some more pre-prepared files ...7
4.2 How to refer to all of the parameters of a shell script.....................................7
4.3 Using shell variables ..8
4.4 Using ‘here documents’ ...10

5. Looping in a shell script ...14
5.1 Constructs for controlling the flow..14
5.2 The foreach command ...14

5.2.1 Looping for each of the parameters ..15
5.2.2 Looping for all files matching a pattern ...16

5.3 Other looping commands...17
6. Variable modifiers and the $0 notation ...17

6.1 Variable modifiers ..17
6.2 The $0 notation ..18

7. Decision making: using the if command...18
7.1 Introduction ..18
7.2 Each command returns an exit status..19
7.3 The shell's status variable..19
7.4 The if command ...20
7.5 The various kinds of conditions that can be tested20
7.6 Examples of the if command..21

8. More about parameters and variables...23
8.1 The $#argv notation ...23
8.2 The $$ notation ..23
8.3 Shifting the parameters along by one ..24
8.4 Reading a line from standard input ..25
8.5 Using the output produced by a command ..26

9. Decision making: using the switch command..28

10. Hints on debugging shell scripts...31

Guide 3: Writing C-shell scripts i

1. Introduction

1.1 The aim of this course
The C-shell is a program that can be executed from the UNIX operating
system. It is the program that understands the commands that a user types
at the keyboard. However, it is also possible to put C-shell commands into
a file, called a script. The aim of this course is to introduce details of how to
write C-shell scripts.

1.2 Before you begin
This course assumes that you already have some understanding of some
of the basic ideas of UNIX. This may have been achieved by attendance at
the ITS’s course An introduction to the UNIX operating system. It is also
desirable for you to be familiar with the contents of the ITS document Guide
2: Further UNIX.

1.3 Teaching yourself
This document has been written so that it can be used as a teach-yourself
guide. If you prefer to attend a Writing C-shell Scripts course, please
contact the IT Service Desk.

1.4 Further information about UNIX
For full details about the C-shell, you need to look at the man page for the
csh command. The following book is a lot easier to read, and it provides a
thorough coverage of the C-shell:

The UNIX C Shell Field Guide, by G. Anderson and P. Anderson,
published by Prentice Hall (1986). Unfortunately, it costs £34.75.

2. What is the shell?
When a user types a command line at the keyboard, the part of the
operating system that analyses this line is called the command line
processor (CLP). In UNIX, the CLP is completely separate from the rest of
the operating system. So, the CLP is written as a separate program, and
each user communicates with a copy of this program. The program itself is
called the shell.

Surprisingly enough, there are usually at least two shells available on a
UNIX system: they are the Bourne shell (sh) and the C-shell (csh). There
may be other shells, such as the Korn shell (ksh) and the Bourne-again
shell (bash). The Bourne shell was devised by Steve Bourne of Bell Labs,
and the C-shell was developed by Bill Joy of the University of California at
Berkeley (UCB). They are both command line processors. However, the
language that is used to communicate with them is different. In this course,
we will be concerned with the C-shell.

Guide 3: Writing C-shell scripts 1

http://www.dur.ac.uk/ITS/Help_and_Info/Documents/Guides/2FurtherUnix.pdf
http://www.dur.ac.uk/ITS/Help_and_Info/Documents/Guides/2FurtherUnix.pdf

3. Simple shell scripts

3.1 Getting started
It will be useful to create the files for this course in a new subdirectory:

1 type
cd

2 and then type
mkdir cshell

3 followed by
cd cshell

To save you from doing a lot of typing, some files for this course have
already been prepared. It will be useful to copy these files to this new
directory, so:

1 type
cp ~courses/cshell/simple/* .

Note: that this command line ends in a space followed by a dot.

1 Type
ls -l

in order to see which files have been copied. We will look at the contents of
each of these files as we go through the course.

3.2 What is a shell script?
Two commands that help you find out what is happening on your computer
are w and who.

1 Type
w

2 followed by
who

In your use of UNIX, the C-shell has been used to process the commands
that you type at the keyboard. It is also possible to get the shell to obey
commands given in a file. Such a file of commands is called a shell script
(or a shell procedure).

Note: The name of this file should not be the same as that of a UNIX
command. In particular, do not use the name test as there is a UNIX
command called test.

We will look at a simple example. You should have a file called spy:

1 type
cat spy

This command should output:

Guide 3: Writing C-shell scripts 2

#!/bin/csh
spy dxy3abc 920520
spy outputs some details about what's happening on the computer.
It takes no parameters.
w | more
echo ""
echo -n "Number of users: "
who | wc -l

The file spy contains a script. The first line of any file that is a C-shell script
should contain:

#!/bin/csh

It is important that the #! are in the first two columns.

A hash character (i.e., a #) also marks the start of a comment: this is a
piece of text that is only present for documentation purposes. A comment
can appear on a line of its own, or it can be given after the command at the
end of the command line.

The commands of the shell script that is in the file spy will be obeyed if you:

1 type
csh spy

Notes: the command echo " " produces a blank line. If an n option is used
with the echo command, the parameters are sent to the standard output
without an end-of-line character.

3.3 Using parameters to pass information to a shell script
You will often want to pass information to a shell script. This is done
through parameters. In the shell script, the first, second, ..., ninth
parameters can be accessed using the notation $1, $2, ..., $9. They can
also be accessed using the notation $argv[1], $argv[2], ..., $argv[9].

Note: argv is called a wordlist. Later in these notes (in Section 8.5), we
will look at other ways of creating a shell variable that contains a wordlist.

Suppose you want a shell script that tells you some information about a file:

1 type
cat fileinfo

The file fileinfo contains:

#!/bin/csh
fileinfo dxy3abc 920307
fileinfo displays some details about a file.
It takes one parameter which is the name of a file.
ls -l $1
wc -l $1
file $1

Guide 3: Writing C-shell scripts 3

The current directory has a file called fred, so in order to execute the script
on the file fred:

1 type
csh fileinfo fred

This command has the same effect as:

ls -l fred
wc -l fred
file fred

3.4 Making a shell script executable
It is a nuisance to have to type:

csh spy
csh fileinfo fred

It would be nicer if the scripts could be executed by:

spy
fileinfo fred

In order to be able to do this, the files containing the shell scripts must be
‘executable’.

The file mode of a file can be changed using the chmod command.
Normally, a file that you create using an editor can only be read from or
written to:

1 type
ls -l

Notice that columns 2 to 4 of this output contain the characters rw-. In order
to make the files spy and fileinfo executable by you:

1 type
chmod u+x spy fileinfo

2 and then type
ls -l

Notice that columns 2 to 4 now contain the characters rwx.

Having done this, these shell scripts can be used just like any other UNIX
command:

1 type
spy

2 followed by
fileinfo fred

Guide 3: Writing C-shell scripts 4

Exercise A

Produce a shell script called wld which contains the commands: who, ls
and date. [Remember to include #!/bin/csh as the first line of the script.]
Check that the script works by typing the command line:

csh wld
Now make the file executable, and then type:

wld
Note: most of these exercises involve the writing of a shell script. A
possible solution to an exercise is given in an appropriately named file in
the directory ~courses/cshell/solutions. For example, a solution to this
exercise is in ~courses/cshell/solutions/wld. The contents of this file will
be displayed if you type:

peep wld
This is because you have a shell script in your current directory called
peep.

Exercise B

Produce a shell script called lpqs which displays the contents of the printer
queues printername1 and printername2. In your shell script, use the echo
command to identify the lines of the output. Make the file executable so that
you are able to execute it just by typing. (Note: the solution given to this
exercise uses the names lasercc1 and dcc1 which do not correspond to
any of the networked printers.)

lpqs

3.5 Storing shell scripts in a subdirectory
We have seen that a shell script like spy can be executed just by typing:

spy

provided that you are in the subdirectory containing the file spy. If you have
written a shell script that you may want to use from any of your
subdirectories, it is useful to put the shell script into a special subdirectory
(just containing executable commands) rather than having copies of the
shell script in each of the subdirectories where you might want to use it.

It is conventional for a user to put their private collection of shell scripts in
the directory ~/bin:

1 type
mkdir ~/bin

This directory needs to be included in the list of directories that are
searched in order to find commands. This list is contained in the shell
variable called path. The contents of this list can be altered by adding a line
to the file ~/.login.

Guide 3: Writing C-shell scripts 5

At this point use an editor to alter the contents of the file ~/.login. It needs
to have the following command added to the end of the file:

set path = ($path ~/bin)

If you use the Pico editor, for example, you can alter this file by typing the
following commands:

cd
cp .login .login.old
pico .login

Make sure that you do not alter any of the existing lines of the file.

This alteration to the .login file will have no immediate effect. In order for it
to have some effect:

1 type
source ~/.login

Now make sure that you are in the directory being used for this course:

1 type
cd ~/cshell

Having done that, we ought to move shell scripts like spy and fileinfo to
the ~/bin directory:

1 type
mv spy fileinfo peep wld lpqs ~/bin

2 followed by
ls -l

You should find that the files spy, fileinfo, peep, wld and lpqs are no
longer in this directory. They have been moved to the ~/bin directory.

Shell scripts that have just been added to a directory that is mentioned in
the path cannot be executed immediately.

1 Type
spy

You should get the error message

spy: Command not found

This occurs because the shell has a built-in shortcut method of getting to
such commands. And it works out the short-cuts whenever it reads the set
path command in the .login file. You can get the shell to re-initialise its
short-cuts, if you:

1 type
rehash

If you now:

1 type

Guide 3: Writing C-shell scripts 6

spy
you should find that it executes the shell script that is in the file ~/bin/spy.

Exercise C

Produce a shell script called showbin that displays on the screen the
contents of the shell script passed as a parameter. For example, the
command:

showbin spy

should execute the more command on the file ~/bin/spy.

1 Create the file showbin in the directory ~/cshell. Make the file
executable, and test it by typing:

showbin spy

2 If it works, type:
mv showbin ~/bin

3 to move the file to the ~/bin directory. Type:
rehash

4 and then test it again by typing:
showbin spy

4. Parameters, shell variables and ‘here documents’

4.1 Getting some more pre-prepared files
We will now obtain some more files that have already been prepared:

1 type
cp ~courses/cshell/others/* ~/bin

We are not copying these files into the current directory (~/cshell) but into
~/bin:

2 type
ls -l ~/bin

Notice that the files that have just been copied already have the file modes
set so that we can execute them. However, since new executable files have
been added to a directory mentioned in the path, we will need to type

rehash
if we wish to execute any of them from another directory.

4.2 How to refer to all of the parameters of a shell script
We have seen that $1, $2, ..., $9 can be used to refer to a particular
parameter of the shell script. The notation $* or $argv[*] is a way of
referring to all of the parameters.

Guide 3: Writing C-shell scripts 7

The file ~/bin/fileinfo2 contains an example of $*. The shell script showbin
produced in the last exercise will be used to output the contents of this file:

1 type
showbin fileinfo2

This file contains:

#!/bin/csh
fileinfo2 dxy3abc 920307
fileinfo2 displays some details about the files passed as parameters.
ls -l $*
wc -l $*
file $*

Now execute it:

1 type
fileinfo2 fred bert jane

This command is equivalent to the commands:

ls -l fred bert jane
wc -l fred bert jane
file fred bert jane

4.3 Using shell variables
You can use variables whilst communicating with the shell. A shell
variable is given a value in the following way:

set VariableName = SomeValue

In particular, a string of characters can be stored in a variable. For
example, suppose there is a rather long directory name which you know
you will have to type many times. You can save some of this typing by
storing the directory name in a variable:

set dir = ~courses/firstunix

The value of a shell variable can be obtained by using the notation:
$VariableName . So:

cd $dir

is equivalent to the command:

cd ~courses/firstunix

And:

cat $dir/portia.txt

is equivalent to:

Guide 3: Writing C-shell scripts 8

cat ~courses/firstunix/portia.txt

There are some predefined shell variables. It is best not to use these
names for your own variables. A list of the shell variables that currently
have values will be displayed if you:

1 type
set

Besides the shell variables that are only active for the current shell, there
are also environment variables. These will have effect all the way from login
to logout. A list of the environment variables can be displayed:

1 type
env

Note: suppose you have files called amap, bmap, and so on, and a shell
script uses a shell variable char which contains a letter. An error will occur
if the shell script contains something like:

cat $charmap

This will be understood as an attempt to access a shell variable called
charmap. However, it is possible to use the notation ${VariableName}
instead of $VariableName. So, for the above example, the script can use:

cat ${char}map

Note: Although these notes introduce the set command as a way for a shell
script to give a value to a shell variable, you may also find it useful to type
commands like:

set dir = ~courses/firstunix
cat $dir/portia.txt

at the UNIX prompt.

Exercise D

Produce a shell script called fileinfoagain that is the same as the script in
~/bin/fileinfo (given in Section 3.3), except that it has the following
changes:

• add the line:

set filename = $1

as the first command to be executed by the script.

• Replace all other occurrences of $1 in the script by $filename.

Note: introducing a shell variable that has the same value as a parameter
is often done in order to make the rest of the shell script easier to
understand.

Guide 3: Writing C-shell scripts 9

4.4 Using ‘here documents’
It is often the case that a shell script contains a command which requires
data. For example, suppose that as part of a shell script you want to edit a
file automatically. It is not easy to do this using a screen editor; so, in the
shell scripts for this course, the editor ed (which is always available on UNIX
systems) will be used.

Although it is possible to tell the shell that we want to get the edit
commands from a file:

...
ed bert <EditCommandsFilename
...

it is often preferable to include the edit commands in the shell script. This
can be done by using what is called a here document.

Here is how it is done:

...
ed bert <<%
first line of edit commands
second line of edit commands
...
last line of edit commands
%
...

The lines between the two % characters form the here document — it is
used as the standard input for the command that is given on the same line
as the <<. The line following the last line of the input must contain a % on
its own with the % appearing in the first column of the line. Note: the two %
characters may be replaced by some other suitable character or by a word.
Note also: any command or program can use a here document.

The here document may refer to parameters and variables. Here are three
worked examples:

Example 1

Suppose a shell script is required that outputs the first line of the file passed
as a parameter to the procedure. For example:

first fred

is to output the first line of the file fred.

Note: the task performed by first is better done by the head command:
e.g.,

head -1 fred

Guide 3: Writing C-shell scripts 10

Solution 1

The file ~/bin/first contains a solution to this problem:

1 type
showbin first

The file first contains the following script:

#!/bin/csh
first dxy3abc 920308
first outputs the first line of a file.
It takes one parameter which is the name of a file.
ed -s $1 <<%
1p
q
%

Now execute it:

1 type
first fred

The first line of the file fred will be displayed.

When an ed command is executed, the first task that is normally done by
ed is to display the number of characters of the file that it is editing - this
output can be suppressed by using ed -s rather than ed.

The p command of the editor ed displays lines on the screen. For example:

2,7p

means print (i.e., display on the screen) lines 2 to 7 of the file being edited.
Note that: 1,1p can be abbreviated to 1p. The q command means quit the
editor.

Example 2

Suppose a shell script is required that alters a file replacing all occurrences
of one string by some other string. The script is to be called by typing a
command like:

rao seperate separate first.tex

This is to change all occurrences of seperate to separate in the file
first.tex.

Solution 2

1 Type
showbin rao

Guide 3: Writing C-shell scripts 11

The following script is a solution to this problem:

#!/bin/csh
rao dxy3abc 920308
rao replaces all occurrences in a file of a string by another string
It takes three parameters: old-string new-string filename
ed -s $3 <<LastLine
g/$1/s//$2/gp
w
q
LastLine

The g command of the editor ed:

g/str/cmd

means that the command cmd is to be performed on all lines that contain
the string str. The s command:

s/old/new/

means substitute the string new for the string old. If the string old is a null
string as in:

s//$2/gp

then the old string is the last string that was typed - in this case, it is $1. A
g at the end of an s command means change all occurrences on the line,
and a p means print each line on the screen.

Example 3

A shell script is required that indents each line of a file by 6 spaces. So:

add6 fred

is to alter the file fred so that each line of fred is indented by 6 spaces.

Solution 3

The following solution does not work:

#!/bin/csh
add6 dxy3abc 920308
add6 adds 6 spaces to the start of each line of a file.
It takes one parameter which is the name of a file.
ed -s $1 <<%
1,$s/^/ /
w
q
%

Guide 3: Writing C-shell scripts 12

It will fail because the shell would interpret the $s to mean use the value of
the variable s. To prevent this, use a \ to quote the $ character:

...
ed -s $1 <<%
1,\$s/^/ /
w
q
%

Alternatively, the shell is prevented from doing variable substitutions and
parameter substitutions if the here document is quoted. This can be done in
two ways:

... ...
ed -s $1 <<\% ed -s $1 <<'LastLine'
1,$s/^/ / 1,$s/^/ /
w w
q q
\% 'LastLine'

Exercise E

The UNIX command tail can be used to output the last 10 lines of a file,
e.g.:

tail fred

Produce a shell script called last10 which does this task. [Do not cheat by
using the tail command in your script!] Your script should use ed and a
here document. [Hint: the ed command $-9,$p can be used to output the
last 10 lines of the file.] Test your script by:

last10 bert

Exercise F

Suppose you want a shell script to output some explanatory information to
the screen, say, the following 4 lines:

You are using the NIH product called 'SuperEd' on the file $1.
We hope you find this product convenient and user-friendly.
You can support us in our endeavours by sending $27 to
the following address: NIH Software Ltd., NIH Street, NIHTown.

There are a number of methods that can be used to do this:

• The shell script could cat a file that contains the 4 lines.
• The shell script could use 4 echo commands.
• The shell script could use a cat command that gets its input from a

here document.

Guide 3: Writing C-shell scripts 13

Produce a shell script called supered that takes one parameter, the name
of a file. The only task it performs is to output the above 4 lines using the
third method mentioned above.

Note that the text contains a $1. Here your script should output the filename
that is passed to supered as a parameter. The text also contains $27. Here
you should output the characters $27.

5. Looping in a shell script

5.1 Constructs for controlling the flow
Like most programming languages, a shell language has constructs for
controlling the flow through a shell script. The C-shell includes the following
constructs: if, switch, foreach, while and goto.

In this section of the notes, we will be looking at the foreach command.

5.2 The foreach command
It is often necessary to repeat a sequence of commands a number of times.
In the C-shell, this can be done using the shell's foreach command:

...
foreach VariableName (SomeList)
 command1
 command2
 ...
 commandn
end
...

The sequence of commands is executed a number of times: each time the
variable following the foreach is given a new value from the list that is
inside the parentheses.

For example, if a shell script contains:

foreach name (fred bert jane)
 echo $name
end

then the following output would be produced:

fred
bert
jane

We will now look at two common uses of foreach loops.

Guide 3: Writing C-shell scripts 14

5.2.1 Looping for each of the parameters
Earlier (in Section 3.3), there was a shell script called fileinfo that output
some information about the file passed as a parameter to the script. In
Section 4.2, we looked at fileinfo2, a script that outputs this information for
each of the files passed as a parameter.

We now look at a better version of fileinfo2.

1 Type
showbin fileinfo3

You should obtain:

#!/bin/csh
fileinfo3 dxy3abc 920308
fileinfo3 displays some details about the files passed as parameters
foreach filename ($*)
 echo --------------------
 ls -l $filename
 wc -l $filename
 file $filename
end
echo --------------------

Try the script out:

1 type
fileinfo3 fred bert

When the script is executed, the shell replaces the $* with a list of the
parameters that have been passed to the script. Advice: if you are thinking
of writing a shell script to do some task on a file, turn it into one which does
the task on any number of files passed as parameters.

Note: do not use a foreach loop to execute a command which will already
loop over filenames. For example:

...
foreach filename ($*)
 ls -l $filename
end
...

is very inefficient compared to:

...
ls -l $*
...

Exercise G

The calendar for the year 1992 can be displayed on the screen by the UNIX
command:

Guide 3: Writing C-shell scripts 15

cal 1992

Produce a shell script called cals which outputs a calendar for each year
passed as a parameter to the script. For example:

cals 1992 2000 1752

5.2.2 Looping for all files matching a pattern
Suppose we want a version of fileinfo that produces output for all files that
match a particular pattern; for example, for all files with names ending in
.tex. We could use:

fileinfo3 *.tex

However, if this task is frequently performed, we could instead use a
special script for it:

1 type
showbin texfileinfo

You should obtain:

#!/bin/csh
texfileinfo dxy3abc 920308
texfileinfo displays some details about the TeX files that are in
this directory. It takes no parameters.
foreach filename (*.tex)
 echo --------------------
 ls -l $filename
 wc -l $filename
 file $filename
end
echo --------------------

When this script is executed, the shell will replace *.tex with a list of files
that match this pattern. Execute the script:

1 type
texfileinfo

Exercise H

Produce a shell script called zzs which makes a copy of each file in the
current directory. Each of the new filenames is to be the same as the old
filename prefixed by the characters zz. So if the directory currently contains
the files bert, fred, jane, after executing the command:

zzs

the directory will contain the files bert, fred, jane, zzbert, zzfred, and
zzjane.

Guide 3: Writing C-shell scripts 16

Exercise I

Find out what happens if a shell script containing:

foreach name ($*)

is executed when the shell script has no parameters. Are the commands in
the foreach loop executed once or zero times?

Exercise J

What is the difference between the following two foreach constructs:

foreach name ($*)
foreach name (*)

5.3 Other looping commands
The C-shell also has while and goto commands that can be used to
achieve looping. These commands will not be covered in this course.

6. Variable modifiers and the $0 notation

6.1 Variable modifiers
A pathname, such as /home/hudson/pg/dxy3abc/papers/first.tex, is
sometimes stored in a shell variable. It can often be useful to extract the
various components of the pathname. For example, we may want the
directory part, i.e., /home/hudson/pg/dxy3abc/papers, or all of the
pathname except the extension, i.e.,
/home/hudson/pg/dxy3abc/papers/first. The C-shell has a number of
variable modifiers that can be used to extract components. The role of each
variable modifier is illustrated by the examples in the following table:

expression value
$filename /home/hudson/pg/dxy3abc/papers/first.tex
$filename:r /home/hudson/pg/dxy3abc/papers/first
$filename:h /home/hudson/pg/dxy3abc/papers
$filename:t first.tex
$filename:e tex

Here are some commands that make a backup copy of each .tex file that
exists in the current directory:

foreach filename (*.tex)
 echo processing $filename
 set root = $filename:r
 cp -p $filename $root.old
end

Guide 3: Writing C-shell scripts 17

6.2 The $0 notation
We have seen the use of $1, $2, ..., $9 to obtain the values of the first 9
parameters. The notation $0 refers to the name by which the shell script
was called. It is occasionally useful. [Note: there is no $argv[0] notation.]

For example, suppose the file echoall in the current directory contains a
script that includes:

echo $0 $1 $2

then the command:

echoall hi there fred

will produce:

echoall hi there

If the file echoall is in another directory, say, in the directory ~dxy3abc/bin,
the command:

echoall hi there fred

will produce something like:

/home/hudson/pg/dxy3abc/bin/echoall hi there

A variable modifier may not be used with $0. If a shell script contains:

echo $0: about to process $filename

the $0: will be misunderstood as an attempt to use a variable modifier.
Instead you can use:

echo ${0}: about to process $filename

However, the following might be more appropriate:

set myname = $0
set mynametail = $myname:t
echo ${mynametail}: about to process $filename

7. Decision making: using the if command

7.1 Introduction
There are two conditional commands available in the C-shell: the if
command and the switch command. In this section, we will be considering
the if command. We will look at switches in Section 9.

Guide 3: Writing C-shell scripts 18

7.2 Each command returns an exit status
When a UNIX command has finished executing, it returns an integer value
to the shell - this value is called the exit status. By convention, the value 0
means the command ran successfully, whereas a non-zero value is
returned if the command was unsuccessful.

For example, the exit status returned by the grep command is as follows:

status meaning
0 if at least one match has been found
1 if no matches have been found
2 if there are syntax errors or a file is inaccessible

An exit status is also returned to the shell whenever a shell script finishes.
Normally, this is the exit status of the last command that was executed by
the shell script. However, the shell script can arrange for a particular value
to be returned by using the shell's exit command. For example:

exit 2

Note: any program written in a programming language can return an exit
status by calling the UNIX function exit.

7.3 The shell's status variable
The variable status can be used to determine the exit status of the last
command that was executed.

1 Type
grep date ~/bin/wld

2 followed by
echo $status

You should find that the grep outputs the line containing the date
command, and the status variable has the value 0.

1 Type
grep freddie ~/bin/wld

2 followed by
echo $status

Since the file ~/bin/wld does not contain the line freddie, the grep
command produces no output, and the status variable has the value 1.

1 Type
grep date benny

2 followed by
echo $status

Since the file benny does not exist, you should find that the grep command
outputs an error message, and the status variable has the value 2.

Guide 3: Writing C-shell scripts 19

7.4 The if command
The if command has the following syntax:

if (expression) then
 commands
else if (expression) then
 commands
else
 commands
endif

The else if section may occur zero or more times, and the else section is
optional. Each of the expressions is evaluated in turn, and if an expression
has the value true the corresponding sequence of commands is executed
and then the command following the endif is executed.

We will look at some examples of the if command in Section 7.6.

7.5 The various kinds of conditions that can be tested
As in most programming languages, the expressions that are used in the
condition parts of an if command can take many forms: you can compare
two strings, you can compare two integers, or you can inspect an attribute
of a file (e.g., whether it exists). You can also form more complex
expressions by using &&, || and ! operators, and by using parentheses.

The following table attempts to explain some of the possibilities. There
must be at least one space between each operand and its operator. The <,
>, <= and >= operators can only be used if the operands are shell variables
containing strings that are integer values.

Guide 3: Writing C-shell scripts 20

condition meaning
!b is b false?
b && c are b and c both true?
b || c is at least one of b and c true?
i < j is integer i< integer j?
i > j is integer i > integer j?
i <= j is integer i <= integer j?
i >= j is integer i >= integer j?
i == j do the integers i and j have the same value?
i! = j are the integers i and j different?
s == t do the strings s and t have the same value?
s != t are the strings s and t different?
s =~p does the string s match the pattern p?
s !~ p does the string s not match the pattern p?
-r filename is the filename readable?
-w filename is the filename writeable?
-x filename is the filename executable?
-e filename does the file filename exist?
-o filename does the current user own the file filename?
-z filename is the file filename of zero length?
-f filename is the file filename a plain file (rather than a directory)?
-d filename is the file filename a directory (rather than a plain file)?

7.6 Examples of the if command
A few examples will be given to illustrate some of the possibilities of the if
command.

The UNIX command mv can be used to change the name of a file:

mv fred bert

However, it often comes as a bit of a shock to some people that this
command will still work if a file bert already exists — the original contents
of bert are overwritten.

Here are some shell scripts that could be used in place of mv. They
gradually increase in terms of user-friendliness/verboseness:

Example 1

if (! -e $2) then
 mv $1 $2
endif

Guide 3: Writing C-shell scripts 21

Example 2

if (-e $2) then
 echo mv has not been done because $2 already exists
else
 mv $1 $2
endif

Example 3

if ((! -f $1) || -e $2) then
 echo mv not done because $1 is not a file or $2 already exists
else
 mv $1 $2
endif

Example 4

if (! -f $1) then
 echo mv has not been done because $1 is not a file
else if (-e $2) then
 echo mv has not been done because $2 already exists
else
 mv $1 $2
endif

Example 5

if (-f $1) then
 set fromfile = isafile
else
 set fromfile = isnotafile
 echo mv has not been done because $1 is not a file
endif
if (-e $2) then
 echo mv has not been done because $2 already exists
else if ($fromfile == isafile) then
 mv $1 $2
endif

Exercise K

If you type:
cal 92

you will get the calendar for the year 92 rather than 1992. Produce a shell
script called nicecal that will default to the 21st century if the parameter is
less than 50 and to the 20th century if the parameter is between 50 and 99.

Guide 3: Writing C-shell scripts 22

Exercise L

Produce a shell script called filetest that tests whether a file (that is passed
as a parameter) exists, is a plain file, and is readable. If the file satisfies all
these criteria, the script should execute an exit 0. Otherwise, it should
execute an exit 1.

Produce a shell script called nicecat that takes a filename as a parameter.
It should execute a filetest command, and then it should test the value of
the status variable. If the variable has the value 0, nicecat should use cat
to display the file's contents. Otherwise, it should display an error message.

8. More about parameters and variables

8.1 The $#argv notation
The notation $#argv is a way of referring to the number of parameters that
were given in the command line. It is often used to check that a shell script
has been called with the right number of parameters.

if ($#argv != 2) then
 echo Usage: nicemv currentname newname
 exit 1
endif
if (! -f $1) then
 echo nicemv: the mv command has not been done because $1 is not a file
 exit 2
endif
if (-e $2) then
 echo nicemv: the mv command has not been done because $2 already exists
 exit 3
endif
mv $1 $2

Exercise M

The syntax of the UNIX command chmod is not particularly easy to
remember. Produce a shell script called plusx which adds execute
permission to each of the files passed as a parameter. If plusx is called
with no parameters, it should instead add execute permission to each of the
files in the directory ~/bin.

8.2 The $$ notation
$$ is a way of referring to the process number of the current shell. The
characters $$ are often used as part of a filename in order to generate a
unique name for a temporary file.

Suppose a shell script (called whichttys) is required that tells you the
terminal numbers of a user that is logged in. For example:

Guide 3: Writing C-shell scripts 23

whichttys dxy3abc dxy3def

is to output only the lines produced by the who command that contain the
strings dxy3abc or dxy3def.

Here is one possibility for the file whichttys:

...
who >/tmp/whichttys$$
foreach username ($*)
 grep $username /tmp/whichttys$$
end
rm /tmp/whichttys$$

8.3 Shifting the parameters along by one
The shell's shift command removes the first parameter from the shell
script's parameter list. After it has been executed,

• $1 will contain what was in $2,
• $2 will contain what was in $3,

and so on.

Note: the shift command does not affect the value of $0.

In Example 2 in Section 4.4, a shell script, rao, was given which replaces
all occurrences in a file of one string by another string. Suppose a shell
script is required that will do the task for any number of files, e.g.:

raos seperate separate ~/papers/*.doc

1 Type
showbin raos

Guide 3: Writing C-shell scripts 24

You should obtain:

#!/bin/csh
raos dxy3abc 920312
raos replaces all occurrences in files of a string by another string.
The first two parameters are the old string and the new string.
Other parameters are the names of the files to be altered.
set myname = $0
set mynametail = $myname:t
if ($#argv <= 2) then
 echo Usage: $mynametail oldstring newstring filename ...
 exit 1
endif
set oldstring = $1
set newstring = $2
shift
shift
foreach filename ($*)
 echo ${mynametail}: about to process $filename
 ed -s $filename <<LastLine
 g/$oldstring/s//$newstring/gp
 w
 q
LastLine
end

Alternatively, the loop (of raos) could use rao, as follows:

foreach filename ($*)
 echo ${mynametail}: about to process $filename
 rao $oldstring $newstring $filename
end

8.4 Reading a line from standard input
A string can be read from standard input by means of the expression: $<

Here is an example of its use. If the destination file of a UNIX cp command
already exists, it will be overwritten by the cp command. Suppose a shell
script is required that asks whether the file should be overwritten. It is called
just like the cp command:

nicecp fred bert

1 Type
showbin nicecp

Guide 3: Writing C-shell scripts 25

You should obtain:

#!/bin/csh
nicecp dxy3abc 920312
nicecp copies the file named as the first parameter to the file named
as the second parameter. If necessary, it asks the user to confirm
whether he/she wants the file named as second parameter overwritten.
if ($#argv != 2) then
 echo Usage: nicecp existingname nameofcopy
 exit 1
endif
if (-f $2) then
 echo -n "Is it OK to overwrite $2? (type y or n): "
 set reply = $<
 if ($reply != y) then
 echo nicecp has not done the copying
 exit 2
 endif
endif
cp $1 $2

Note: the same sort of thing can be done by:

cp -i fred bert

8.5 Using the output produced by a command
The shell permits an expression that is the output produced by the
execution of a command. This is known as command substitution. It is
denoted by: `cmd`.

Note: the character used on both sides of cmd is `, i.e., a backquote or left-
quote. This character is different from ', the single quote character.

For example, the command:

set today = `date`

sets the variable today to a string containing something like:

Fri Mar 13 12:53:11 GMT 1992

This set command is equivalent to a command like:

set today = (Fri Mar 13 12:53:11 GMT 1992)

This has assigned a wordlist to the shell variable today.

It is possible to access a component of a wordlist. For example, the
commands:

echo It is `date`
set today = `date`
echo As you can see, today is $today[1] and the year is $today[6]

Guide 3: Writing C-shell scripts 26

would output something like:

It is Fri Mar 13 14:22:59 GMT 1992
As you can see, today is Fri and the year is 1992

Exercise N

Produce a shell script called nicerm which works through the files of the
current directory. It outputs the name of each file, reads a reply from the
standard input, and if the reply is y or Y, it removes the file. Note: whilst
testing this script, use something which would not cause a disaster, such
as:

echo would remove $filename

rather than:

rm $filename

Note: this shell script performs a task similar to: rm -i *

Exercise O

Produce a shell script called lslong which does an ls -l for the files passed
as parameters to the script. However, if there are no parameters, lslong
reads a line from the user containing the names of the files that are to be
passed to ls -l.

Try out your script by typing:
lslong bert jane

and:
lslong

Exercise P

An example of command substitution is:

more `ls -rt`

What does this command do?

Exercise Q

Produce a shell script called sizes that for each filename passed as a
parameter displays only the filename and the size of the file in bytes. Hint:
use the output from ls -l.

Try out your script by typing:
sizes bert jane

Guide 3: Writing C-shell scripts 27

and:
sizes *

9. Decision making: using the switch command
When a shell script has to execute one of a number of alternative
sequences of commands, it is often better to use a switch command rather
than a long complex if command.

The script catday demonstrates a few things including the use of switch
commands:

1 type
showbin catday

You should obtain the following output:

#!/bin/csh
catday dxy3abc 920312
catday outputs the day (e.g., Thu) given three parameters
(such as 92 03 12) that give the year, month and date in month.
if ($#argv != 3) then
 echo "Usage: catday year month date e.g., catday 92 05 21"
 exit 1
endif
set year = $1
set month = $2
set dateinmonth = $3

switch ($year)
 case 92:
 set lyf = 1
 set soyf = 1
 breaksw
 case 93:
 set lyf = 0
 set soyf = 3
 breaksw
 case 94:
 set lyf = 0
 set soyf = 4
 breaksw
 case 95:
 set lyf = 0
 set soyf = 5
 breaksw
 case 96:
 set lyf = 1
 set soyf = 6
 breaksw
endsw
switch ($month)

Guide 3: Writing C-shell scripts 28

 case 1:
 case 01:
 set mm = 01
 set som = 1
 breaksw
 case 2:
 case 02:
 set mm = 02
 set som = 32
 breaksw
 case 3:
 case 03:
 set mm = 03
 set som = `expr $lyf + 60`
 breaksw
 case 4:
 case 04:
 set mm = 04
 set som = `expr $lyf + 91`
 breaksw
 case 5:
 case 05:
 set mm = 05
 set som = `expr $lyf + 121`
 breaksw
 case 6:
 case 06:
 set mm = 06
 set som = `expr $lyf + 152`
 breaksw
 case 7:
 case 07:
 set mm = 07
 set som = `expr $lyf + 182`
 breaksw
 case 8:
 case 08:
 set mm = 08
 set som = `expr $lyf + 213`
 breaksw
 case 9:
 case 09:
 set mm = 09
 set som = `expr $lyf + 244`
 breaksw
 case 10:
 set mm = 10
 set som = `expr $lyf + 274`
 breaksw
 case 11:
 set mm = 11

Guide 3: Writing C-shell scripts 29

 set som = `expr $lyf + 305`
 breaksw
 case 12:
 set mm = 12
 set som = `expr $lyf + 335`
 breaksw
endsw
switch ($dateinmonth)
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 case 7:
 case 8:
 case 9:
 set dateinmonth = 0$dateinmonth
 breaksw
 default:
 breaksw
endsw
@ dateinmonthnum = $som + $soyf
@ dateinmonthnum = $dateinmonthnum + $dateinmonth
@ dateinmonthnum = $dateinmonthnum % 7 + 1
set dayname = (Sun Mon Tues Wed Thu Fri Sat)
echo $dayname[$dateinmonthnum]

A switch is followed by an expression inside parentheses. This expression
is sometimes called the selector. Following the switch line, there are a
number of arms. Each arm consists of one or more case patterns, followed
by zero or more commands which usually end in a breaksw command.
When a switch command is executed, the selector is evaluated, and the
commands of the first arm where the value of the selector matches the
arm's case pattern is then executed.

If an arm is executed, and the arm does not end in a breaksw command,
the commands of the following arm are then executed. If the value of the
selector does not match any of the patterns, then the commands following
default: (if present) are executed.

The characters *, ? and [...] have special meanings within a case pattern.

Notes: the above example illustrates two ways of doing arithmetic on a
shell variable: either use variables that are assigned values using @ rather
than set, or use the expr command. Towards the end of the script, the
operator % is used. It gives the remainder after integer division. Then
dayname is assigned a wordlist, and one of the components of dayname
is output.

Guide 3: Writing C-shell scripts 30

10. Hints on debugging shell scripts
There are several ways of debugging a shell script.

If you type:

csh -n ScriptFile

then the shell reads the file ScriptFile checking it for syntax errors. There is
no need to supply parameters, because the commands of the shell script
are not executed. If there is an error, only an error message is output - it
does not tell you which line is in error.

Note: if ScriptFile is not in the current directory, you will have to supply the
full pathname of ScriptFile, e.g.:

csh -n ~/bin/ScriptFile

If you type:

csh -nv ScriptFile

then each line of the shell script is output as it is syntax-checked. [The
script is not executed.]

If you type:

csh -v ScriptFile parameter ...

then the script is executed. Each line of the script is output before it is
executed.

The x option tells the shell to output each line after variable and command
substitutions have taken place but before the line is executed. It can be
combined with the v option:

csh -vx ScriptFile parameter ...

However, such a command can produce a large amount of output,
especially if the script contains loops.

There is another approach to debugging scripts - it does not use these
options. Instead, echo commands are inserted into the script at appropriate
points.

For example, you might identify where in the script the execution has
reached by adding lines like:

echo checking whether the input file exists

or:

foreach filename ($*)
 echo processing the file $filename
 ...

Guide 3: Writing C-shell scripts 31

It is also useful to output the values of shell variables, especially when
tricky code has been used:

set uid = `expr $id[1] : '.*=\(.*\)('`
echo uid has the value $uid

The echo command can also be useful when testing a shell script that
could be disastrous if it goes wrong. Put echo at the start of a command
line to prevent it doing its dastardly deed, and only remove it when you are
sure it will do what you want it to do. An example is illustrated by:

foreach filename (*.tex)
 set root = $filename:r
 echo mv $filename $root.old
end

Finally, if you think that the earlier part of a script is failing to work properly,
then put an exit command at a suitable point to stop the shell from
executing the rest of the script. First, get the code prior to this exit
command working properly, before moving the exit command to a later
point in the script.

Guide 3: Writing C-shell scripts 32

	1. Introduction
	1.1 The aim of this course
	1.2 Before you begin
	1.3 Teaching yourself
	1.4 Further information about Unix
	2. What is the shell?
	3. Simple shell scripts
	3.1 Getting started
	3.2 What is a shell script?
	3.3 Using parameters to pass information to a shell script
	3.4 Making a shell script executable
	3.5 Storing shell scripts in a subdirectory

	4. Parameters, shell variables and ‘here documents’
	4.1 Getting some more pre-prepared files
	4.2 How to refer to all of the parameters of a shell script
	4.3 Using shell variables
	4.4 Using ‘here documents’

	5. Looping in a shell script
	5.1 Constructs for controlling the flow
	5.2 The foreach command
	5.2.1 Looping for each of the parameters
	5.2.2 Looping for all files matching a pattern

	5.3 Other looping commands

	6. Variable modifiers and the $0 notation
	6.1 Variable modifiers
	6.2 The $0 notation

	7. Decision making: using the if command
	7.1 Introduction
	7.2 Each command returns an exit status
	7.3 The shell's status variable
	7.4 The if command
	7.5 The various kinds of conditions that can be tested
	7.6 Examples of the if command

	8. More about parameters and variables
	8.1 The $#argv notation
	8.2 The $$ notation
	8.3 Shifting the parameters along by one
	8.4 Reading a line from standard input
	8.5 Using the output produced by a command

	9. Decision making: using the switch command
	10. Hints on debugging shell scripts

