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a b s t r a c t

In this paper, we discuss validation of hydrological models, namely the process of evaluating performance
of a simulation and/or prediction model. We briefly review the validation procedures that are frequently
used in hydrology making a distinction between scientific validation and performance validation. Finally,
we propose guidelines for carrying out model validation with the aim of providing agreed methodologies
to efficiently assess model peculiarities and limitations, and to quantify simulation performance.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The term validation is well known in hydrology and environ-
mental modelling and is commonly used to indicate a procedure
aimed at analysing performance of simulation and/or forecasting
models. In the scientific context, the term validation has a broader
meaning including any process that has the goal of verifying the
ability of a procedure to accomplish a given scope. As an example,
it can indicate the verification of a preliminary hypothesis or the
security assessment of a computer network.

The need for agreed and standardised validation protocols in
hydrological modelling has become progressively more urgent. In
fact, in the last 30 years, hydrologic modelling has been greatly
improved thanks to the increasing availability of computational
resources, the advancement in the process understanding as well
as the availability of spatially distributed data, mainly provided by
remote sensors (Smith et al., 2004). The scientific literature contin-
uously proposes new, sophisticated modelling solutions aimed at
reproducing the hydrological cycle at multiple scales (e.g., field,
watershed and even global scale) and for several goals, including
research-oriented objectives, such as advancing the knowledge of
physics of water movement, and more practical scopes, like water
ll rights reserved.
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resources evaluation, flood protection and design of civil infrastruc-
tures. These numerical models adopt approaches and computational
schemes that may be widely different. For this reason, validation
protocols are required to (i) facilitate model inter-comparison, (ii)
improve development of superior models, as well as their coupling
and integration with data assimilations schemes, and (iii) help fore-
cast users optimise their decision making.

Another important reason for developing standard validation
criteria is the progressive mismatch between the complexity of
modelling tools and the capacity of modellers and practitioners
to rigorously assess the reliability of modelling application (Hug
et al., 2009). This difficulty is exacerbated by the lack of sufficiently
informative data. As an example, measured variables are often
point values while simulated variables are frequently averaged in
time and/or in space. Moreover, measured variables are affected
by uncertainty due to the monitoring technology (e.g., Di Bald-
assarre and Montanari, 2009). The problem with data availability
and uncertainty has been highlighted since the first approaches
to environmental modelling validation and has often limited the
possibility to adopt techniques successfully used in other scientific
disciplines (Santhi et al., 2001).

A number of notable efforts have been recently devoted towards
the development of shared modelling methodologies and verifica-
tion standards in hydrology and close disciplines. The US National
Weather Service (NWS) created a team of researchers, named
Hydrologic Verification System Requirements Team, which had,
among his tasks, the goal of establishing requirements for a
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comprehensive national system to verify hydrologic forecast (see
the website http://www.weather.gov/oh/rfcdev/projects/hvsrt_
charter_05.htm). Moreover, Theme 3 ‘‘Advance the learning from
the application of existing models, towards uncertainty analyses
and model diagnostics’’ of the Predictions in Ungaged Basins
(PUB) initiative also promotes harmonisation of model evaluation
techniques. Similar standardisation processes have been started
in other research fields in which mathematical modelling has be-
come a common practice such as environmental quality assessment
and water resources management (Belia et al., 2009; Muschalla
et al., 2009). Particularly, Belia et al. (2009) proposed a road map
for the definition of standard modelling approaches and model
evaluation protocols starting from the creation of a common
knowledge base to which water quality modellers can refer for their
applications. Muschalla et al. (2009) defined an open protocol to ap-
ply to wastewater process modelling, highlighting the importance
of model validation and uncertainty analysis especially in those
cases where model complexity is not supported by sufficient data
availability. In addition, a relevant effort was provided by the EU
research project HarmoniQuA (Harmonizing Quality Assurance in
model based catchments and river basin management) aimed to
the development of modelling support tools that investigate the
reliability of modelling responses at catchment scale (Refsgaard
et al., 2005; Scholten et al., 2007).

Even if the need for common validation criteria is widely
accepted in the hydrology and in the environmental science context,
piecemeal contributions to this aim were presented in the specia-
lised literature (Klemeš, 1986; Andréassian et al., 2009; Krause
et al., 2005; Schaefli and Gupta, 2007; Gupta et al., 2009). In addition,
validation protocols have been so far rarely applied in practical
cases. For example, the NWS recently conducted two experiments,
named DMIP (Distributed Model Intercomparison Project) and
DMIP2, where several distributed hydrological models have been
applied to common benchmark cases, consisting of well-
instrumented basins located in diverse regions of US with contrast-
ing climatic and landscape conditions (Smith et al., 2004). These ini-
tiatives were very successful, with the contribution of a notable
number of different models. However, no standardised validation
protocols have been utilised to analyse results. Verification tools
would have been instead extremely important to intercompare the
models, by quantifying their capability to reproduce specific hydro-
logical processes, or to assess their robustness, i.e., whether if they
may be applied in a broad range of conditions and climates, or only
in specific regimes.

The considerations outlined above indicate that, despite recent
efforts, an agreed and rigorous validation approach has not yet
been proposed, due to the strong difficulty in identifying a unique
and general protocol applicable to the large number of existing
models and kinds of applications proposed in hydrology. As a
matter of fact, in the majority of cases, validation is limited to
analyse one or two events (e.g., intense floods), by simply com-
paring times series of simulated versus observed variables, and
computing few lumped metrics that are able to capture only
some attributes characterising model performance. The present
paper aims at overcoming these limitations, by delineating a first
proposal for a validation protocol in hydrology that explicitly dis-
tinguishes two phases: (i) the quantitative evaluation of model
performances, and (ii) the qualitative evaluation of model struc-
ture and science foundation. The guidelines here proposed are in-
tended to aid the work of researchers and practitioners/engineers
while developing and applying numerical modelling tools in
hydrology. After clarifying some definitions that are used in the
paper (Section 2), we provide a summary of the state of the art
of validation techniques for surface hydrological modelling
including metrics and graphical tools, whose combined use is
suggested in the proposed protocol (Section 3). The validation
protocol with relative guidelines are presented in Section 4, while
conclusions are drawn in Section 5.
2. Definitions and principles of evaluation theory

Prior to defining some basic concepts that have been used
throughout this paper, we underline that high uncertainty exists
in the terminology adopted in the present literature focused on
the general process of evaluating the usefulness of a model for a gi-
ven purpose. This implies that, in diverse contexts (e.g., environ-
mental sciences, economics, meteorology, and medicine), the
same word or expression is referred to indicate different activities.
For example, the word verification is currently utilised in atmo-
spheric science in the expression forecast verification to indicate
the procedures aimed at measuring the ability of a meteorological
model to predict the future weather (e.g., Jolliffe and Stephenson,
2003). Alternative expressions in this field are forecast evaluation,
validation or accuracy. In the broader field of environmental mod-
elling, some authors used the expression model verification to de-
fine a procedure for establishing that the model code correctly
solves the set of mathematical equations adopted to simulate the
real world (Matott et al., 2009). Since a discussion on the uncer-
tainty in terminology and taxonomy would be too long and out
of the scope of this paper, here we underline the existence of this
problem and refer the reader to, e.g., Anderson and Bates (2001)
and Matott et al. (2009) for more details.

The definitions adopted in this work are based on the consider-
ation that the most frequent validation procedures, used in hydro-
logic and environmental modelling in general, proposed to split
model evaluation in three complementary phases (Gupta et al.,
2008): (a) quantitative evaluation of model performance; (b) qual-
itative evaluation of model performance; (c) qualitative evaluation
of model structure and scientific basis. In the following, we alterna-
tively use the expressions model validation or performance valida-
tion to indicate the concepts (a and b). This would be equivalent
to the definition of model validation proposed by Matott et al.
(2009). We instead adopt the expression scientific validation to re-
fer to the activities described in point (c).

In what follows, the term model will be used to indicate a
numerical tool for simulating input, state and output variables of
a specific process. The user confidence into model results is strictly
connected with the simulation reliability, which is assessed by
comparing modelling output with data observed in the real world.
The comparison is in turn made by means of user-defined criteria
depending on the aim of the specific application. In the subsequent
sections, the main performance and scientific validation proce-
dures presented in literature are briefly reviewed.
3. Overview of techniques and methodological practice

3.1. Performance validation: graphical techniques and performance
metrics

The typical approach adopted to evaluate model performance
requires the comparison between simulated outputs on a set of
observations that were not used for model calibration. This proce-
dure coincides with the so-called split sample test in the classic
hierarchical validation scheme proposed by Klemeš (1986), as well
as with the first level of the theoretical scheme of Gupta et al.
(2008).

Model performance can be addressed by means of qualitative
and quantitative criteria. The former essentially rely on the graph-
ical comparison between observed and simulated data, whereas
the latter are based on numerical performance metrics. Both ap-
proaches are fundamental tools to be used in complementary fash-
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ion, since they are able to capture distinct aspects of model
performance.

The choice of the validation criteria is guided by several factors.
It depends on the nature of the simulated variables and the main
model purpose. It is also affected by the fact that model simula-
tions can be either deterministic or probabilistic. In the traditional
deterministic approach, a unique best output is produced. More re-
cently, a number of techniques, such as ensemble forecasting
(Schaake et al., 2007), have been proposed to account for the differ-
ent sources of uncertainty associated with input data, model struc-
ture and parameterization. Through these approaches,
probabilistic hydrological forecasts are produced that attempt to
explicitly quantify uncertainty.

Many criticisms have been addressed to traditional lumped
metrics for their lack of diagnostic power or inability to capture
differences between different model or parameter sets leading to
ambiguous situations characterised by equifinality. As a result,
more powerful evaluation tool like multi-objective methods that
combines different (weighted) performance metrics into one over-
all objective function (e.g., Gupta et al., 1998) have been proposed.
Another notable issue is that metric interpretation in not always
straightforward. A common approach to address this problem con-
sists of evaluating the metrics computed from model outputs with
a benchmark value or a reference forecast that is generally an un-
skilled forecast (such as random chance and persistence).

In the review presented in this section, we mainly consider a
hydrological model simulating the streamflow in a river basin, thus
focusing on metrics and graphical techniques primarily applied to
time series. In particular, we present a review of robust perfor-
mance validation methods that can be utilised for both long-term
multi-seasonal simulations and periods characterised by specific
dominant processes (e.g., extremes or snow melting periods). In
each of the following subsection, we first introduce the techniques
useful for validating performance of deterministic simulations and,
then, we discuss the methods utilised for assessing accuracy of
probabilistic hydrological predictions. We highlight that, in this
last case, most of the verification techniques are based on tools
developed in applied meteorology, a discipline that has historically
devoted consistent efforts on model validation and forecast
verification.

3.1.1. Graphical techniques
Graphical techniques allow a subjective and qualitative valida-

tion. Despite the pletora of exiting goodness-of-fit metrics, visual
inspection still represents a fundamental step in model validation
as it allows the study of temporal dynamics of model performance
and facilitate the identification of patterns in error occurrence. In
most cases, they are based on a graphic comparison of simulated
and measured time series (Fig. 1a). This kind of plots can be diffi-
cult to read, especially when the observation period is long. Scat-
terplots of simulated versus observed discharge are more easily
interpretable and provide an objective reference given by the 1:1
line of perfect fit (Fig. 1b). Other common graphical representa-
tions are residual plots (Fig. 1c) and the comparison of streamflow
duration curves as well as flood frequency distributions. Recently,
the use of ensemble forecast techniques in hydrological models has
led to the adoption of graphical methods developed and typically
used in applied meteorology to evaluate probabilistic forecasts,
like the reliability diagram (Fig. 1d) and the verification rank histo-
gram (Fig. 1e) (Wilks, 2006; Mascaro et al., 2010).

3.1.2. Performance metrics
The performance metrics (or indexes) provide a quantitative

and aggregate estimate of model reliability and are generally ex-
pressed as a function of the simulation errors. Some metrics have
a statistical foundation, as the likelihood functions (Beven et al.,
2001; Romanowicz and Beven, 2006), the AIC (Akaike Information
Criterion), the BIC (Bayesian Information Criterion) and the KIC
(Kashyap Information Criterion). The last three statistic criteria ac-
count for the mathematical complexity of the model by including
the number of model parameters in the metric computation.

A wide number of metrics is derived from the general expres-
sion (Van der Molen and Pintér, 1993):

F ¼ 1
N

XN

t¼1

jys;t � yo;t j
s

" #1=b

; s P 1; b P 1 ð1Þ

or from the analogous relation based on the relative deviations,

F ¼ 1
N

XN

t¼1

ys;t � yo;t

yo;t

����
����
s

" #1=b

; yo;t – 0; s P 1; b P 1 ð2Þ

where F is the performance metric, N is the number of observations,
while ys,t and yo,t are the simulated and observed values at time t,
respectively.

In particular, the metrics related to (2) are dimensionless and,
thus, provide a more balanced evaluation of model performance
over the entire study period. Metrics derived from both expres-
sions (1) and (2) do not have an upper boundary while a null value
indicates a perfect fit.

According to the values assumed by s and b parameters, the two
expressions provide different metrics, some of which are listed in
Table 1. For higher s, the metric is more sensitive to large differ-
ences between simulated and observed values. Several perfor-
mance metrics adopt s = 2 and are therefore based on squared
deviations.

To assess the quality of the model fit, other indexes, for example
the Janus coefficient (Power, 1993), compare the model errors in
the validation and the calibration period. Other goodness-of-fit
metrics are based on regression operations between simulated
and observed data (Legates and McCabe, 1999). In this category,
we include (Table 1): the coefficient of determination R2, the index
of agreement D (Wilmott et al., 1985), and the coefficient of effi-
ciency NSE introduced by Nash and Sutcliffe (1970), which is by
far the most utilised index in hydrological applications. Differently
from the metrics previously described, the perfect agreement is
achieved when R2, D and NSE are equal to unity.

Due to its large popularity, it is worthy to focus on Nash–Sutc-
liffe coefficient, whose main characteristics are as follows: (i) it
measures the departure from unity of the ratio between the mean
squared error and the variance of the observations; (ii) it varies be-
tween �1 and 1; (iii) a null value is obtained when the simulation
is identically equal to the mean value of the observed series.

The diagnostic properties of the Nash–Sutcliffe efficiency have
been recently investigated in detail by Gupta et al. (2009) through
the decomposition into more meaningful components. These
authors show that using NSE is equivalent to check model capabil-
ity to reproduce the following statistics: (i) mean value and (ii) var-
iance of the discharge time series, and (iii) coefficient of correlation
between simulated and observed time series. The weight attrib-
uted to each of the above components depends on the magnitude
of the observed data, but is mainly concentrated on correlation.
Basing on this evidence, Gupta et al. (2009) proposed an innovative
index, called KGE (Kling-Gupta Efficiency), expressed as an explicit
function of the three statistics mentioned above.

Additional modifications of the NSE have been proposed in the
literature, including those based on transformed variables, others
using relative instead of absolute errors, and those adopting refer-
ence value different from the mean (Krause et al., 2005; Chiew and
McMahon, 1994; Romanowicz et al., 1994; Freer et al., 1996).
Other frequently used indexes include those based on the rank cor-
relation criteria, such as the Spearman and Kendall coefficients. Re-
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Fig. 1. Graphical methods used to evaluate model performance. Deterministic forecast: (a) observed and simulated time series; (b) scatter plot; (c) residual plot. Probabilistic
forecast: (d) reliability diagram; (e) verification rank histogram.

Table 1
Numerical metrics used to evaluate model performance.

Performance metric Expression

Mean Absolute Error (MAE) F1 ¼ 1
N

PN
t¼1jys;t � yo;t j

Mean Square Error (MSE) F2 ¼ 1
N

PN
t¼1jys;t � yo;t j

2

Root Mean Square Error (RMSE)
F3 ¼ 1

N

PN
t¼1jys;t � yo;t j

2
h i1=2

Minimax objective function F4 ¼ 1
N max jys;t � yo;t j

Average Absolute Percentage Error
(AAPE)

F5 ¼ 100 1
N

PN
t¼1

ys;t�yo;t
yo;t

��� ���
Mean Square Relative Error (MSRE)

F6 ¼ 100 1
N

PN
t¼1

ys;t�yo;t
yo;t

��� ���2
Coefficient of determination (R2)

F7 ¼
PN

t¼1
yo;t�yoð Þ ys;t�ysð ÞPN

t¼1
yo;t�yoð Þ2

� �0:5 PN

t¼1
ys;t�ysð Þ2

� �0:5

( )2

Index of agreement (D)
F8 ¼ 1�

PN

t¼1
ys;t�yo;tð Þ2PN

t¼1
ys;t�yoj jþ yo;t�yoj jð Þ2

Nash–Sutcliffe Efficiency
coefficient (NSE) F9 ¼ 1�

PN

t¼1
ys;t�yo;tð Þ2PN

t¼1
yo;t�yoð Þ2
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cently, new validation criteria based on fuzzy measures or on
mechanism to account for expert knowledge and ‘‘soft data’’ have
become popular, even if they introduce a larger degree of subjec-
tivity in performance evaluation (Seibert and McDonnell, 2002;
Beven, 2006). The review presented so far has been focused on
metrics mainly applicable to deterministic simulations and is not
intended to be exhaustive. The reader is referred to Jachner and
van den Boogaart (2007) and Dawson et al. (2007) for a detailed
survey.

When dealing with probabilistic forecasts, traditional goodness-
of-fit metrics (like those mentioned for deterministic simulations)
do not allow a complete and fair evaluation of the forecast perfor-
mance. In his essay on the nature of goodness in weather forecasting,
Murphy (1993), considering a distribution-based approach, distin-
guishes nine attributes that contribute to the fullest description of
the multi-faceted nature of the probabilistic forecast quality: Bias,
Association, Accuracy, Skill, Reliability, Resolution, Sharpness,
Discrimination and Uncertainty. Each of these attributes carries a
fundamental information about the forecast performance and, only
recently, some techniques have been specifically designed to quan-
tify their weight in the process of verifying hydrologic probabilistic
forecasts. Contributions in this field include the work of Welles
(2005), Welles et al. (2007), Laio and Tamea (2007), Engeland et al.
(2010), Mascaro et al. (2010) and the technical report released by
NWS downloadable at http://www.nws.noaa.gov/oh/rfcdev/docs/
Final_Verification_Report.pdf.

Moreover, taking again inspiration to applied meteorology, both
deterministic and probabilistic hydrological forecasts can be trans-
formed into a categorical yes/no forecasts according to some criti-
cal value or probability threshold (e.g., probability that the
streamflow accumulated in a given duration will exceed a certain
threshold). The contingency table, which shows the frequency of
yes and no forecasts and occurrences and the frequency of their
combinations (hit, miss, false alarm, correct negative), is a common
way to analyse what types of errors are being made. A large variety
of categorical statistics can be computed from the elements of the
contingency table to describe particular aspects of forecasts perfor-
mance, including probability of detection, false alarm rate, critical
success index, Gilbert skill score, Peirces skill score, Heidke skill
score, among the others. A commonly adopted verification tool in
case of probabilistic forecast for binary (yes/no) events is the Brier
score, which takes the form of the more general Ranked Probability
Score (RPS) when it is intended to be applicable to multi-category
forecasts. A further generalisation of the RPS to an infinite number
of classes led to the definition of the Continuous Ranked Probabil-
ity Score, a metric particularly useful to verify reliability, resolution
and uncertainty attributes of ensemble streamflow forecasts.
3.2. Scientific validation

The concept of scientific validation has been originated from the
idea that verifying the model performance by simply comparing
outputs and observations does not assure that the model is correct
from a scientific point of view. In other words, this limitation does
not allow us to assess if the model structure and parameterization
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are consistent with the physics of the simulated processes (Oreskes
et al., 2003). It is well known that every model provides a simpli-
fied representation of reality, which depends on availability of
observations, knowledge of phenomena, computational capability,
and final purposes of the application. Given these limitations, the
scientific validation aims at evaluating the consistency, and the
coherence with real world, of the model thought as an ISO (in-
put-state-output) system. In this framework, the quantification of
the different sources of uncertainty (e.g., observations, process
parameterization, model structure) is crucial (Todini, 2007). Syn-
thesizing, the scientific validation has the goal of verifying that
right outputs are produced for the right reason (Kirchner et al.,
2006; Aumann, 2007).

The scientific validation may include and extend the perfor-
mance validation and is specifically required in particular cases,
including: (a) when the quality and quantity of the observations
used for comparison with model outputs are not sufficient to allow
an adequate performance validation; (b) when the model is utilised
with the goal of advancing the knowledge of physical processes,
rather than to make predictions; (c) when the hydrological model
is not the ‘‘focus’’ of a given application, but just a ‘‘means’’ to char-
acterise the initial conditions or quantify variables needed to study
other physical, chemical, and/or biological processes.

So far, no agreed methodological approach has been proposed
by the international scientific community to deal with scientific
validation. However, beyond the general principles above stated,
a large number of techniques are already developed in hydrology
as well as in other disciplines, which can be considered as applica-
tions in the field of scientific validation.

One goal of scientific validation is the assessment of model
hypotheses. This task often relies on the identification of the main
processes that affect the real world and that model should care-
fully account for. With this aim Aumann (2007), in the field of ecol-
ogy, suggests to conduct a system analysis aimed at detecting the
processes, occurring at different scales, that can be considered as
the dominant processes or emergent properties across different
hierarchical levels of the model. In general, the observation of
the same natural processes at different scales can lead to useful in-
sights in process knowledge. In this framework techniques based
on the upscaling/downscaling of state variables, model parameters,
input variables and model conceptualizations (Bierkens et al.,
2000) provide a recognised, model-oriented approach for coping
with the scale transfer problem (e.g., Bloschl and Sivapalan,
1995). An upscaling/downscaling technique is also used for model
diagnostic in meteorology (Hantel and Acs, 1998). Coming back to
hydrology, strong enhancements in recognising the main process
controlling water balance and rainfall–runoff processes may be
achieved by jointly exploiting (i) lumped, semi-distributed and dis-
tributed models; (ii) parcel, hillslope and catchment models and
observations; (iii) regional and at-site estimates of hydrological
random variables.

Besides the assessment of model hypotheses, scientific valida-
tion aims at providing the proof of model adequacy to the repre-
sentation of real world beyond (or together with) the result of
validation tests. In fact, one model could be right for the wrong rea-
sons, for example, by compensating error in model structure with
errors in parameter values (Refsgaard and Henriksen, 2004).

This argument may lead to recognising the equifinality problem
posed by Beven et al. (2001) and Beven (2006) but, rather, scientific
validation points to the identification of model selection and
parameter estimation pursuing the inequifinality concept pro-
posed by Todini (2007). Casted in the Bayesian framework, the
inequifinality concept is expressed by stating that model structure,
parameter vector and predictions can be chosen as those more
likely than others, i.e. with posterior densities characterised by
more pronounced peaks and smaller predictive uncertainties.
In many research fields, a multi-criteria approach has been pro-
posed where the behaviour of different state variables, internal to
the model, is analysed and exploited in order to verify and diagnose
the model. This kind of approach can take advantage of information
and data obtained from remote sensing and/or field based observa-
tions of physical quantities related to vegetation states, air temper-
ature, soil moisture, etc. (Castelli, 2008). On the other hand, this
philosophy leads to increasing model complexity. In fact, multi-site
validation is possible if simulations of spatial patterns are ac-
counted for. Also, multi-variable checks are source of precious
information if predictions of the behaviour of individual subsys-
tems within a catchment are performed (Refsgaard and Henriksen,
2004). Thus, another important checkpoint of scientific validation
lies in the assessment of the equilibrium between model purpose,
model complexity and availability of data sources and information.
In this perspective, scientific and performance validation may be
merged. This happens, for example, in cases when the performance
metrics combine various measures aimed at making diagnosis or
providing information to correct the model at the appropriate level.
4. Proposal of a validation protocol: general guidelines

The scientific literature continually suggests new advances
about model validation. However, most of the new proposals are
dedicated to specific technical details, like, for example, the opti-
mal combination of performance metrics (Reusser et al., 2009)
and model diagnostic issues. Less consideration has been devoted
to the ethic and philosophical principles that should guide the
development of innovative validation techniques. The principal
reason for this limited attention is probably the potential subjec-
tivity of these guiding principles. We instead believe that the latter
should become the main subject of the discussion. Model valida-
tion should be intended as a modeller self-training tool more then
a way to objectively show the performance of the model.

The leading principle that we would like to emphasise is that the
value of a simulation study should be associated not only with the
quality of results, but also (and perhaps more importantly) with
their scientific interest. We would like to re-elaborate the idea that
a model performs well only if it returns satisfactory results. In fact,
it is widely recognised that the good score returned by a perfor-
mance metric only provides a limited view of the practical utility
and scientific value of a model. It is also recognised that providing
examples of poor model performance is very useful to highlight
model weaknesses. These principles are valid both for scientific
model development and for practical applications. Especially in
the latter case, the knowledge of model limitations is even more
important than the investigation of its best performance because
they should affect design strategies and safety factors. Model valida-
tion in engineering practice is often perceived only as a quality
assurance issue while it may have a broader pro-active impact on
modelling choices guiding monitoring campaigns, specific investi-
gations or simply a wiser choice of the modelling tools. This misun-
derstanding, along with the obvious costs of the procedure, took
model validation to be neglected in the most part of practical
applications.

We believe an important guideline for the validation process
could be given by the so-called SWOT analysis (Hill and West-
brook, 1997), namely, a tool for strategic planning that can be used
to evaluate Strengths, Weaknesses, Opportunities and Threats
associated with a model and its application. A possible schematic
of the SWOT analysis applied to hydrological validation is pre-
sented in Table 2. This approach allows assessing which opportuni-
ties can be gained and which risks can be avoided through the
strengths of the model, as well as which risks can be caused by
the model weaknesses and how they can be mitigated. The under-



Table 2
Proposal of a SWOT analysis applied to a hydrological model.

SWOT analysis Internal factors

Strenghts Weaknesses

External factors Opportunities Highlight model strengths and related opportunities Highlight model weaknesses and how they can be mitigated
Risks Highlight how model strengths allow avoiding risks Highlight which risks are caused by model weaknesses
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lying philosophy is that model limitations should be discussed
with the same detail that is dedicated to model strengths. When
a particular model is chosen strengths are usually discussed in
view of the scope of the analysis (therefore highlighting the oppor-
tunities). However, any model only provides an approximation of
reality and therefore weaknesses are unavoidably present. We be-
lieve that these limitations should be discussed as well, along with
the related risks. Actually, model weaknesses are rarely mentioned
in scientific studies. The systematic use of the SWOT approach in
hydrology would stimulate a more insightful scientific evaluation.

4.1. Guidelines for performance validation

The basic idea in performance validation is to provide several ele-
ments that can be used by researchers and practitioners/engineers
to clarify different and complementary issues related to model per-
formance. The guidelines are summarised by the following points.

1. Provide clear and unequivocal indications about model perfor-
mance in real world applications.

2. Apply the validation procedure by using independent informa-
tion with respect to what was used for model calibration.

3. Perform validation and discussion of data reliability, and possi-
bly implement a combined validation of models and data.

4. Use graphical techniques and several numerical performance
metrics to evaluate different aspects of model performance.
Among the available graphical techniques, we suggest the use
of scatter plots of observed versus simulated values for their
immediate readability. The use of the logarithmic scale should
be properly justified. The selected metrics should be justified.

5. When dealing with probabilistic simulations, use rigorous tech-
niques that test several attributes of forecast quality.

6. When presenting results, do not focus only on a few cases (e.g.,
a single intense flood event), but consider a statistically signif-
icant number of cases including those where the model did
not return satisfactory results. Indications about worst perfor-
mance should be provided, discussing the possible reasons that
are responsible for the obtained performance level.

7. If possible, extend the validation to model input and state
variables.

8. If possible, validate the model over different temporal and spa-
tial scales.

9. Evaluate the opportunity to apply jack-knife techniques to cre-
ate confidence intervals (Shao and Tu, 1995; Castellarin et al.,
2004; Brath et al., 2003).

The above list is meant to be the basis for a code of practice which
is based on the principle of integrating different validation methods
for comprehensively evaluating model strengths and limitations.

4.2. Guidelines for scientific validation

Guidelines for the scientific validation protocol, which are
mainly useful for research and model development, can be summa-
rised as follows:

1. Clearly identify the model purpose(s) and check if the adopted
model addresses it (them).
2. List and discuss all the assumptions; describe the validation
procedure and the relative hypotheses.

3. Analyse the reliability of theoretical fundaments; justify the
degree of complexity and the computational burden.

4. Evaluate and discuss possible alternative modelling hypotheses.
5. Use all the possible knowledge (physical processes, observa-

tions) to support model development and application. Under-
line the coherence of the solution with the physical basis of
the simulated processes.

6. Analyse the entire ISO system pointing out the uncertainty
associated with input and output components.

7. Make data and numerical codes publicly available, make the
scientific community able to reproduce results. If this is not
be possible (data ownership and so on), provide a detailed
description of the study to support repeatability.

8. Identify strengths and weaknesses of the model and highlight
their interactions with risks and opportunities, as proposed by
the SWOT analysis. Provide support to scientific review with a
detailed discussion of the critical points.

As previously highlighted, the scientific validation is contiguous
to performance validation and can be enhanced by points listed in
the previous subsection, whenever they can be applicable in rela-
tion to data availability and model goals.
5. Conclusions

This paper intends to provide a contribution towards the iden-
tification of agreed principles for model validation. The basic idea
is that validation should provide an exhaustive evaluation of both
model scientific basis and performance. For this purpose, it is nec-
essary to highlight not only the model strengths but also the weak-
nesses, according, for example, to the principles suggested by the
SWOT analysis. A first suggestion for a model validation protocol
is presented, by providing recommendations to structure the vali-
dation process and to produce a comprehensive and comprehensi-
ble validation. We believe the on-going development of new
modelling tools and applications requires focusing on the criteria
for a transparent presentations of models and results.
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