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Abstract. Several contributions to the hydrological literature have brought into question
the continued usefulness of the classical paradigm for hydrologic model calibration. With
the growing popularity of sophisticated “physically based” watershed models (e.g., land-
surface hydrology and hydrochemical models) the complexity of the calibration problem
has been multiplied many fold. We disagree with the seemingly widespread conviction that
the model calibration problem will simply disappear with the availability of more and
better field measurements. This paper suggests that the emergence of a new and more
powerful model calibration paradigm must include recognition of the inherent
multiobjective nature of the problem and must explicitly recognize the role of model
error. The results of our preliminary studies are presented. Through an illustrative case
study we show that the multiobjective approach is not only practical and relatively simple
to implement but can also provide useful information about the limitations of a model.

1. Introduction and Scope

Many hydrologic models must be “calibrated” to be useful
for the solution of practical problems. By calibration we mean
that the hydrologist must estimate values for the model “pa-
rameters” that enable the model to closely match the behavior
of the real system it represents. In some cases the appropriate
values for a model parameter can be determined through di-
rect measurements conducted on the real system. However, in
many situations the model parameters are conceptual repre-
sentations of abstract watershed characteristics and must be
determined through a trial-and-error process that adjusts the
parameter values to match the model response to historical
input-output data.

During the past 2 decades a great deal of research has been
devoted to the development of automated (computer-based)
methods for the estimation of model parameters by fitting
them to historical data. That research has focused primarily on
four issues: (1) the development of specialized techniques for
handling the kinds of errors present in the measured data, (2)
the search for an optimization strategy that can reliably solve
the parameter estimation problem, (3) the determination of
the appropriate quantity and most informative kind of data,
and (4) the efficient representation of the uncertainty of the
calibrated model (structure and parameters) and translation of
that uncertainty into uncertainty in the model response. Re-
search into techniques for accounting for data error has led to
the development of maximum likelihood functions for measur-
ing the “closeness” of the model and the data [e.g., Sorooshian
and Dracup, 1980; Sorooshian, 1981; Sorooshian et al., 1982,
1983; James and Burges, 1982; Sefe and Boughton, 1982; Lem-
mer and Rao, 1983; Kuczera, 1983a, b; Ibbitt and Hutchinson,
1984]. Research into optimization methods has led to the use

of population-evolution-based search strategies [e.g., Brazil
and Krajewski, 1987; Brazil, 1988; Wang, 1991; Duan et al.,
1992, 1993; Sorooshian et al., 1993]. In this regard the shuffled
complex evolution (SCE-UA) global optimization algorithm
has proved to be consistent, effective, and efficient in locating
the globally optimal model parameters of a hydrologic model
[e.g., Duan et al., 1992, 1993; Sorooshian et al., 1993; Luce and
Cundy, 1994; Gan and Biftu, 1996; Tanakamaru, 1995; Tanaka-
maru and Burges, 1997; Kuczera, 1997]. Research into data
requirements has led to the understanding that the informa-
tiveness of the data is far more important than the amount
used for model calibration [e.g., Kuczera, 1982; Sorooshian et
al., 1983; Gupta and Sorooshian, 1985; Yapo et al., 1996]. Fi-
nally, research into representation of model uncertainty has
led to practical procedures for rigorous statistical analysis of
model parameter uncertainty [e.g., Spear and Hornberger, 1980;
Jones, 1983; Kuczera, 1988]. With these developments the ca-
pabilities and limitations of the classical strategy, rooted in
statistical approaches, for calibrating single-output hydrologic
models with up to 10–15 parameters may be considered to be
reasonably well understood.

Notwithstanding the progress mentioned above, we share
the concern surfacing in the hydrological literature that the
“classical” approach to model calibration has some serious
limitations that necessitate the emergence of a new and more
powerful paradigm [see, e.g., Klepper et al., 1991; van Straten
and Keesman, 1991; Beven and Binley, 1992; Yapo et al., 1996].
One of these limitations is the fact that it is typically difficult,
if not impossible, to find a unique “best” parameter set that
obviates consideration of other feasible parameter sets. It is
our opinion that the various classical attempts (including our
earlier work) to locate unique model parameters are based on
a philosophy that involves some longstanding and questionable
assumptions that arise from the adoption of classical statistical
techniques for the fitting of empirical models to data. A second
and, from the point of view of this paper, perhaps more serious
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limitation is the woeful inadequacy of current strategies in the
face of the emerging generation of multi-input-output hydro-
logic models [e.g., Beven and Kirkby, 1979; Kuczera, 1982,
1983a, b; De Grosbois et al., 1988; Woolhiser et al., 1990; Yan
and Haan, 1991a, b; Gupta and Sorooshian, 1994a, b; Yapo et
al., 1996].

Some interesting (and somewhat similar) methods for ad-
dressing these limitations, particularly in the context of predic-
tion uncertainty, have begun to appear in the literature. These
include the generalized likelihood uncertainty estimation
(GLUE) framework for representing model parameter and
prediction uncertainty within the context of Monte Carlo anal-
ysis coupled with Bayesian estimation and propagation of un-
certainty [see, e.g., Beven and Binley, 1992; Freer et al., 1996],
the Monte Carlo set membership procedure (MCSM) [see,
e.g., Keesman, 1990; van Straten and Keesman, 1991], and the
prediction uncertainty method (PU) [see, e.g., Klepper et al.,
1991]. All of these approaches are directly or indirectly related
to the generalized sensitivity analysis (GSA) method of G. M.
Hornberger and colleagues at the University of Virginia [see
Spear and Hornberger, 1980]. Although these approaches still
have weaknesses that need to be addressed (e.g., the GLUE
technique requires subjective decisions in the selection of prior
parameter distributions, the “likelihood” criterion, and the
cutoff thresholds), we share the opinion voiced by Clarke
[1994, p. 345] that such approaches represent “ z z z a bold at-
tempt to introduce some much-needed new thinking into a
field that is in grave danger of becoming intellectually sterile.”

The ideas presented in this paper have similarities to and
also some notable differences from the GSA-based GLUE,
MCSM, and PU statistical uncertainty analysis methods. The
major similarity is the use of an initial Monte Carlo sampling
of the feasible parameter space to approximate prior parame-
ter and prediction uncertainty. The major difference is our
focus on the inherent multiobjective nature of the model cal-
ibration problem. To be clear, we state at the outset that we do
not consider either the statistical uncertainty analysis methods
discussed in the literature or the multiobjective approach pre-
sented here to be complete in themselves. We consider these
approaches to be complementary. Indeed, to be satisfactory,
the emerging paradigm for model calibration will need to rec-
ognize and incorporate treatment of both the statistical repre-
sentation of uncertainty and the multiplicity and noncommen-
surate nature of measures for extracting useful information
from the data. In this paper we will focus largely on the latter
issue. The next two sections of this paper present our point of
view and the basis for our reasoning and (where relevant)
compare and contrast the two approaches. The final sections
illustrate the validity and efficacy of our arguments by present-
ing and discussing the practical results of our initial studies to
date.

2. Toward a Multiobjective View
Consider a system 6 for which a hydrologic model * is to be

calibrated. We assume that the mathematical structure of the
model is essentially predetermined and fixed and that physi-
cally realistic upper and lower bounds on each of the model
parameters can be specified a priori (thereby defining the fea-
sible parameter space, i.e., the initial uncertainty in the param-
eters). To begin, let us consider the simple formulation in
which the model is required to simulate only one aspect of the
system, say the time evolution of streamflow. Let D 5

{d1, z z z , dn} represent the vector of streamflow measure-
ment data available at time steps 1, z z z , n and let O(u ) 5
{o(u )1, z z z , o(u )n} represent the corresponding vector of
estimated model output fluxes generated using the parameter
values u. The difference between the model-simulated fluxes
and the measurement data can be represented by the residual
vector E(u ) 5 G[O(u )] 2 G(D) 5 {e(u )1, z z z , e(u )n},
where the function G( ) allows for linear or nonlinear trans-
formations (such as log transformations, power transforma-
tions, weightings, etc.) of the streamflow measurement data
and the corresponding estimated fluxes. In the classical ap-
proach to model calibration the goal is to find the best values
for the parameters u such that E is in some sense made as close
to “zero” as possible. The standard approach is to define some
measure L of the “length” of vector E and then to attempt to
find the values of the model parameters u that minimize L .
However, there is no unambiguously “correct” way in which to
define this measure of length (commonly called the objective
function). By far the most popular measure is the mean
squared-error estimator (MSE), appropriate when the mea-
surement errors are known to be uncorrelated and homosce-
dastic (having constant variance) or when the properties of the
measurement errors are unknown. When the measurement
errors are believed to be heteroscedastic (nonconstant vari-
ance), the heteroscedastic maximum likelihood estimator
(HMLE) can be used [Sorooshian and Dracup, 1980]. Table 1
lists some of the other objective functions that are commonly
referenced in the literature; this particular list consists of the
various measures used by the Hydrologic Research Laboratory
of the National Weather Service for manual and stage-wise
semiautomated calibration of the Sacramento soil moisture
accounting (SAC-SMA) model of the National Weather Ser-
vice River Forecast System (NWSRFS) [Brazil, 1988].

In over 2 decades of investigation it has not proved possible
to clearly demonstrate that a particular objective function is
better suited for calibration of a model than some other [e.g.,
Chapman, 1970; Diskin and Simon, 1977; Sorooshian et al.,
1983; Yan and Haan, 1991a, b; Yapo et al., 1996a]. Further,
even when a particular objective function is chosen, it has
proved impossible to find any best parameter set for a given
watershed. To illustrate this problem, a 4-month portion of the
measured and simulated hydrographs for the Leaf River Basin
in Mississippi is displayed in Figure 1. The SAC-SMA model
was calibrated to this watershed using the SCE-UA algorithm
and 8 water years of calibration data. Separate calibration runs
were made using the daily root mean square estimator
(DRMS 5 MSE1/2) and the HMLE. Notice that the best
DRMS parameter set matches the early portion of the hydro-
graph extremely well, and the best HMLE parameter set sys-
tematically underestimates it, while for the latter portion of the
hydrograph the HMLE parameter set performs well and the
DRMS parameter set overestimates it. The results of calibrat-
ing the model separately to each of the 40 water years of
available data using the SCE-UA algorithm and the DRMS
objective function are shown in Figures 2a and 2b. The best
DRMS fit obtained for each year is shown in Figure 2a, and the
variation in the 40 corresponding globally optimal parameter
sets is shown in Figure 2b. Clearly, to choose a single best
parameter set would be difficult; a parameter set that gives
excellent forecasts for 1 year might perform very poorly on
another.

Now, we certainly expect that a computer-based model of a
watershed, being an imperfect representation of a physical
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system, will be unable to provide a perfect match to the data.
This inability may be due to the presence of errors in both the
data and the model (by model error we mean error arising
because of simplified or otherwise imperfect representations of
the structure of the system). The common approach to dealing
with this is to make some assumptions regarding the statistical
distribution of the output data errors (input data errors are
typically ignored; for exceptions, see Troutman [1985a, b] and
Kitanidis and Bras [1980a] among others) and either consider
the “model error” to be “small” or to be somehow “absorbed”
into the output error residual (for exceptions, see Kitanidis and
Bras [1980b, c]). The residual is then expected to behave sta-
tistically in the same manner as the output measurement error.
On the basis of our study of the problems of calibrating hy-
drologic models, we suggest that

1. The magnitude of the model error for some portions of
the model response may, in general, be equivalent to or even
substantially larger than the output measurement error.

2. The model errors do not necessarily have any inherent
probabilistic properties that can be exploited in the construc-
tion of an objective function (e.g., if a nonlinear relationship is
approximated with a linear one, the approximation errors that
arise are not random in the probabilistic sense). While we can
assume a probability structure for model error (as do Kitanidis
and Bras [1980c]), this will be purely for the sake of mathe-
matical convenience.

On the basis of these propositions we are faced with the
possibility that there may not exist an objective “statistically
correct” choice for the objective function and therefore no
statistically correct “optimal” choice for the model parameters.
In fact, we are left with the intuitively reasonable concept that
the hydrologist may choose among several possible parameter
sets (and indeed model structures), each of which closely
matches the hydrograph in different ways; for example, one
parameter set (model) may better match the peak flows, while
another may give more emphasis to matching the recessions
(this is similar to what happens when different experts are
called upon to “manually” calibrate the same model). Note
that this rationale for multiobjective equivalence of several
parameter sets (models) is different from the rationale for
what Beven and Binley [1992] call “equifinality” of parameter
sets (models), what van Straten and Keesman [1991] call
“equally probable (or characteristic)” parameter sets, or what
Klepper et al. [1991] call “acceptable” parameter sets. Those
authors base their arguments on the probabilistic representa-
tion of parameter (model) uncertainty. Our arguments, how-
ever, are based on the multiple ways in which the best fit of a
model to the data can be defined. The multiobjective equiva-
lence of parameter sets is more commonly referred to as “pa-
reto optimal” or “nondominant” in the literature; in this paper
we shall adopt the terminology pareto optimal. The equifinal
(GLUE), equally probable (MCSM), acceptable (PU), and

Table 1. Objective Functions Used by the National Weather Service for Calibration of
the SAC-SMA Model

Name Description Formula*

DRMS Daily Root Mean
Squared Error Î1

n O
t51

n

~dt 2 ot~u!!2

TMVOL Total Mean Monthly
Volume Squared Error O

i51

nmonth S 1
nday~i!

O
t51

nday~i!

~dt 2 ot~u!!D2

ABSERR Mean Absolute Error
1
n O

t51

n

udt 2 ot~u!u

ABSMAX Maximum Absolute Error max
1#t#n

udt 2 ot~u!u

NS Nash-Sutcliffe Measure

1 2

1
n O

t51

n

@dt 2 ot~u!#2

1
n O

t51

n

~dt 2 d#!2

BIAS Bias (mean daily error)
1
n O

t51

n

~dt 2 ot~u!!

PDIFF Peak Difference max
1#t#n

$dt% 2 max
1#t#n

$ot~u!%

RCOEF First Lag Autocorrelation
1
n O

t51

n

~dt 2 ot~u!!~dt11 2 ot11~u!!

sdso~u!

NSC Number of Sign Changes (Count the number of times the sequence
of residuals changes sign)

*Minimize with respect to u.
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Figure 1. Example showing how different “optimal” parameter sets are better at matching different portions
of the hydrograph.

Figure 2. Example showing the variation in results obtained by calibration of the Sacramento soil moisture
accounting (SAC-SMA) model to 40 different water years for the Leaf River watershed.
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pareto optimal parameter sets (models) may overlap but will
not, in general, be equivalent.

We are therefore faced with the question, “Do any objective
guidelines exist that take model error into consideration and
can aid in proper calibration of the model?” To explore this
issue, we examine the assumptions that go into the classical
formulation. Each component of E can be written as ej(u ) 5
emj(u ) 1 edj, where emj(u ) is the model error and edj is the
additive data measurement error. Unless edj 5 0, it will be
impossible to drive E(u ) to zero, even if the model were
perfect. Because of this, and because E(u ) is a vector of n
components, the goal of model calibration might be more
correctly stated as that of finding u such that ej(u ) 5 edj for
all j 5 1, z z z , n . This condition is met only if emj(u ) 5 0,
and the model output therefore perfectly matches the true
system output. Only if the model were a perfect representation
of the system might such a goal be achievable. We must make
some assumptions in order to proceed. For example,

1. We can focus on the measurement errors (the classical
regression approach), make some assumptions about the sta-
tistical distribution of those errors, and apply maximum like-
lihood or Bayesian theory to arrive at an objective function
that computes some appropriately weighted sum of the model
residuals [e.g., Sorooshian and Dracup, 1980; Kuczera, 1983a, b;
Yan and Haan, 1991a, b]. By optimizing this function with
respect to u we will obtain a solution such that the statistical
distribution of the model output residuals approximates the
assumed error distribution as closely as is permitted by the
structure of the model. Examples of this approach are the MSE
(assumes homoscedastic and independent errors) and the
HMLE (assumes heteroscedastic and independent errors).

2. We can ignore the statistical properties of the measure-
ment errors and decide instead to find some approach that will
tend to drive each and every one of the elements of E(u ) as
close to zero as possible. However, this leaves us with the
multiobjective optimization problem:

min (with respect to u) uE~u ! u

5 $ ue1~u ! u , · · · , uen~u ! u% (1)

(where uej(u ) u is the absolute value of ej) which may, in gen-
eral, have a unique solution only if we assume that the model
and data errors are nonexistent.

The properties of the first approach have been extensively
explored in the literature, and so we will focus primarily on the
properties of the second. The multiobjective optimization
problem stated in (1) is considerably more difficult to solve
than a single-objective one. Further, the solution to this prob-
lem will, by its very nature, not be unique (we discuss this in
more detail below).

One classical way to approach the problem of multiple mea-
sures is to make some assumption that permits “ z z z combining
them into a single index z z z ” [Beven, 1993] that works well in
practice (see e.g., the suggestions given by van Straten [1983],
Klepper et al. [1991], and Beven and Binley [1992]). For exam-
ple, one typical approach is to find u in order to minimize some
measure of the dispersion of the model residuals around zero
in whatever manner is permitted by the structure of the model.
For instance, by assigning equal weights to the absolute mag-
nitude of each residual and computing the average we obtain
the mean absolute-error estimator (MAE), or by weighting the
magnitude of each squared residual equally and computing the
average we obtain the mean squared-error estimator (MSE).

In the absence of a compelling and reasonable basis for the
assignment of the weights we are faced with the unavoidable
fact that the model calibration problem is inherently multiob-
jective and that any attempt to convert it into a single-objective
problem must necessarily involve some degree of subjectivity.

If we proceed with the multiobjective optimization problem
as stated, the first issue that must be addressed is that the
problem stated in (1) is not properly defined in multiobjective
terms. This is because the magnitudes of the individual model
residuals are directly related through the structural dynamics
of the model. Therefore it is necessary to find some transfor-
mation F of uE u that provides us with only a set of (relatively)
unrelated measures that preserve the information content of
the data. Actually, more general forms of F can also be derived
by directly applying various transformations (such as max{ },
min{ }, median{ }, Var{ }, etc.) directly to O(u ) and D). In
practice the dimension m of F will generally be significantly
less than the dimension n of E . We discuss the problem of
finding the set of relatively unrelated measures contained in F
later. Having found this set of measures, we can correctly state
the calibration problem as

min (with respect to u) F~u ! 5 $ f1~u ! , · · · , fm~u !% (2)

Second, with this formulation the solution will no longer, in
general, be a single unique parameter set (model) but will
consist of a Pareto set P(Q) of solutions in the feasible pa-
rameter space Q corresponding to various trade-offs among
the objectives. The definition of this Pareto set is such that any
member u i of the set has the properties: (1) For all nonmem-
bers u j there exists at least one member u i such that F(u i) is
strictly less than F(u j), and (2) it is not possible to find
u j within the Pareto set such that F(u j) is strictly less than
F(u i) (i.e., by “strictly less than” we mean fk(u j) , fk(u i) for
all k 5 1, z z z , m).

According to the first of these statements the feasible pa-
rameter space can be partitioned into “good” solutions (Pareto
solutions) and “bad” solutions. According to the second, in the
absence of additional information it is not possible to distin-
guish any of the good (Pareto) solutions as being objectively
better than any of the other good solutions (i.e., there is no
uniquely best solution). Every member u i of the Pareto set will
match some characteristics of the hydrograph better than every
other member of the Pareto set, but the trade-off will be that
some other characteristics of the hydrograph will not be as well
matched.

When compared to the classical single-objective formula-
tion, several interesting advantages of the multi-objective ap-
proach become immediately apparent (see the hypothetical
example illustrated in Figure 3). We begin with an initial model
uncertainty Uo(Q) represented by the size of the feasible pa-
rameter space Q to be searched (lighter shaded portion of
Figure 3a) and by the corresponding size of the space Uo(Q)
of possible hydrograph solutions Q (shown here in terms of
log(Q); see lighter shaded portion of Figure 3b). As pointed
out by Beven and Binley [1992], these spaces can be properly
constrained using prior knowledge about what parameter com-
binations and watershed responses are reasonable. The goal of
the single-objective approach is to find a single unique solution
Q* thereby reducing the final size of the parameter uncertainty
Uf(Q) and, hence, Uf(Q) to zero. However, given the exis-
tence of model and data error, Uf(Q) must remain nonzero,
and this solution is therefore unreasonable. In contrast, the
multiobjective approach finds that because of the existence of
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model error, the minimal value for Uf(Q) is the Pareto pa-
rameter space P(Q) (darker shaded portion of Figure 3a), and
the minimal value for Uf(Q) is the associated Pareto hydro-
graph space P(Q) (darker shaded portion of Figure 3b). Given
the existence of data errors in addition to the model errors, the
actual parameter and hydrograph uncertainties must be larger
than these minimum bounds. Further, only under the condi-
tions that the data and model errors are nonexistent can the
uncertainty in the parameters and hydrograph be reduced to
zero.

Note that any fuzziness in the specification of the Pareto
parameter spaces (P(Q) and P(Q)) in the multiobjective ap-
proach arises from only two factors: (a) subjectivity in the
selection of the measures in F and (b) the statistical uncer-
tainty in the computation of each measure f j(u ) arising from
sampling considerations. Unlike the GLUE, MCSM, and PU
approaches, an arbitrary threshold of acceptability in the value
of the measure is not required. Similar to these approaches,
however, the size and characteristics of P(Q) and P(Q) pro-
vide very useful information about the limitations of the
model. In the hypothetical illustration we see that the Pareto
hydrograph space does not bracket significant portions of the

observed data, indicating either sizeable measurement error or
some potential deficiencies in the model structure. The sys-
tematic nature of the discrepancy might suggest that the culprit
is deficiency in the model structure. A large Pareto range in
some of the parameters (e.g., u1 in Figure 3a) might suggest
that the deficiency lies primarily in the structural representa-
tions associated with those parameters. The classical single-
objective approach provides little or no such guidance.

3. Dealing With Multiple Output Fluxes
The formulation presented above argues that even in the

case of a model with just one output flux to be simulated, the
calibration problem is inherently multiobjective. However,
many of today’s hydrologic and environmental models are de-
signed to simulate not only streamflow but also various com-
ponents of stream chemistry, sediment load, latent and sensi-
ble heat flux, soil moisture, and so on. Measurement data on
several of these fluxes (say D1–Dk) may be available that can
be used to help calibrate the parameters of the model. The
goal of model calibration now becomes that of finding values
for the model parameters u such that the model-simulated

Figure 3. Illustration of parameter and hydrograph estimates obtained using the multiobjective calibration
approach.
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fluxes match all k of these (noncommensurable) measurement
data fluxes as closely as possible. To apply the multiobjective
approach, we construct the extended data vector D 5
{D1 z z z , Dk}, find the set of relatively unrelated and non-
commensurable measures that preserve the information con-
tent of this extended data, and proceed in the manner de-
scribed earlier.

4. Effective and Efficient Multiobjective
Optimization

To solve the model calibration problem stated in (2), we
must do two things. First, the functions Fj must be specified;
that is, we must find a set of relatively unrelated measures of
the differences between the model simulations and the obser-
vations that preserves the information contained in the data.
This issue will be addressed in the next section. Second, we
must find a method to effectively and efficiently (inexpensive-
ly) estimate the location of the Pareto solution set P(Q). We
will tackle the second problem in this section.

The field of optimization theory has studied the multiobjec-
tive optimization problem quite extensively [Goicoechea et al.,
1982]. Because the Pareto set seldom consists of a finite num-
ber of solutions, most multiobjective techniques attempt to
identify a countable number of distinct solutions distributed
within the Pareto region. The classical methods for obtaining
such solutions can be categorized as a posteriori methods, a
priori methods, and interactive methods. Examples of a pos-
teriori methods (also called generating techniques) include the
weighing method [Zadeh, 1963], the «-constraint method [Mar-
glin, 1967], and the goal attainment method [Gembicki, 1974].
Examples of a priori methods include the goal programming
and the compromise programming methods [Zeleny, 1973].
Examples of interactive techniques include the surrogate worth
trade-off method (SWT) [Haimes and Hall, 1974] and the
trade-off development method (TRADE) [Goicoechea et al.,
1976]. Presentations and discussions of these methods can be
found in textbooks [Goicoechea et al., 1982; Szidarovsky et al.,
1986] and in review papers [Hipel, 1992; Szidarovsky and Szen-
teleki, 1987; Yapo et al., 1992].

The overriding characteristic of classical multiobjective op-
timization methods is the sequential generation of Pareto so-
lutions. As an illustration, we shall consider the weighing
method and assume there are 5 objectives f1(u ), z z z , f5(u ) to
be minimized. In this approach, each objective is allocated a
weight, and the multiobjective optimization problem is con-
verted into a single-objective optimization problem as

min (with respect to u) F~u ! 5 w1 f1~u ! 1 · · ·

1 w5 f5~u ! (3)

where w1 1 z z z 1 w5 5 1. This problem can be easily solved
using standard single-objective global optimization algorithms
such as the SCE-UA. By randomly (or in some other fashion)
selecting different values for the weights allocated to the five
objectives we can generate as many discrete Pareto solutions as
necessary to obtain an acceptable approximation of the con-
tinuous Pareto space. Alternatively, we can interactively guide
the selection of weights until a “satisfactory” solution point is
discovered. For example, Yan and Haan [1991a, b] used three
objectives to generate a limited number of Pareto solutions
while calibrating the U.S. Geological Survey (USGS) precipi-
tation-runoff modeling system (PRMS) [Leavesley et al., 1983].

Although they did not attempt to approximate the entire Pa-
reto space, their results indicated generally improved model
performance in comparison to single-objective calibration.

Although the classical approach is seemingly simple to im-
plement, it carries a heavy price: for each discrete Pareto
solution we must solve a complete single-objective optimiza-
tion problem. If, for example, we need 100 discrete solutions to
approximate the continuous solution space, we would have to
reinitialize and rerun the optimization procedure 100 separate
times. If, as in Sorooshian et al. [1993], each single-objective
optimization run requires as many as 5,000–10,000 function
evaluations, we are faced with a potential cost exceeding of the
order of half-a-million to a million function evaluations, not a
very heartening prospect.

Fortunately, an effective and efficient nonclassical method
for solving the multiobjective problem in its original form has
been developed. The method, entitled multiobjective complex
evolution (MOCOM-UA), is a general purpose global mul-
tiobjective optimization algorithm that provides an effective
and efficient estimate of the Pareto solution space with only a
single optimization run and does not require subjective weight-
ing of the objectives. MOCOM-UA is based on an extension of
the SCE-UA population evolution method reported by Duan
et al. [1993]. A detailed description and explanation of the
method are given by Yapo et al. [1997a, b] and so will not be
repeated here.

In brief the MOCOM-UA method involves the initial selec-
tion of a “population” of p points distributed randomly
throughout the s -dimensional feasible parameter space
Uo(u ). In the absence of prior information about the location
of the Pareto optimum a uniform sampling distribution is used.
For each point the multiobjective vector F(u ) is computed,
and the population is ranked and sorted using a Pareto-ranking
procedure suggested by Goldberg [1989]. Simplexes of s 1 1
points are then selected from the population according to a
robust rank-based selection method [Whitley, 1989]. A multiob-
jective extension of the downhill simplex method is used to
evolve each simplex in a multiobjective improvement direction.
Iterative application of the ranking and evolution procedures
causes the entire population to converge toward the Pareto
optimum. The procedure terminates automatically when all
points in the population become nondominated. Experiments
conducted using standard synthetic multiobjective test prob-
lems have shown that the final population provides a fairly
uniform approximation to the Pareto solution space P(Q)
[Yapo et al., 1997a, b].

5. Selection of the Objective Functions
To implement the multiobjective procedure outlined above,

it is necessary to specify a set of relatively unrelated functions
F (“unrelated” in the sense that they measure different impor-
tant aspects of the differences between the observed data D
and the model simulations O(u )) that can be used to extract
the useful information contained in the data and transform it
into estimates for the parameters (models). In the systems
theoretic sense, useful “information” can be viewed as that
which enables one to test a hypothesis. There are two impor-
tant issues to be addressed here.

First, it should be noted that the hypothesis to be tested is
always a subjective consequence of the interaction between the
context of the problem and what the modeler considers to be
important. In the context of watershed modeling the modeler
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must decide what are the important characteristics of water-
shed behavior to be reproduced by the calibrated model and
what constitutes an effective measure of that behavior. For
example, during manual calibration of the SAC-SMA model
the HRL-NWS hydrologist may examine the values of several,
if not all, of the measures listed in Table 1. Note that these
include measures of the daily and monthly residual variance
(DRMS and total monthly volume (TMVOL)), the mean daily
error (bias), the error in matching of peak flow (peak differ-
ence (PDIFF)), and the measures of the “nonwhiteness” or
systematic nature of the residuals (R coefficient (RCOEF) and
number of sign changes (NSC)). The final outcome of manual
calibration is a result of the attempt to strike a balance in
optimizing (minimizing or maximizing, as appropriate) all of
these measures. The hypothesis (rarely explicitly stated) is, of
course, that it is possible to find values for the model param-
eters that can achieve acceptable optimal values for each of the
measures under consideration. In the standard automatic cal-
ibration strategy, only a single measure (typically some mea-
sure of the dispersion of the residuals around zero, e.g., MSE)
or some combination of measures into a single measure, is
used.

Second and equally important is the fact that a hypothesis
typically involves several underlying assumptions that must be
tested as part of the hypothesis testing procedure. In the con-
text of watershed modeling this might involve a rigorous anal-
ysis of the residuals to verify that they belong to some a priori
assumed distribution, are unbiased, are homogenous, and have
no systematic components, etc. [e.g., see Yapo et al., 1996]. For
example, in the context of applying the maximum likelihood
theory to the calibration of a watershed model the hypothesis
might be that it is possible to find a set of parameters such that
the variance of the residuals can be minimized to some accept-
able value while assuming that the underlying errors belong to
some distribution, typically having zero mean and insignificant
autocorrelation. In the process of residual analysis it will be
necessary to construct measures (tests) to detect any deviation
of the model behavior from the a priori assumptions (i.e.,
regarding the distribution, bias, and correlation of the residu-
als). From this perspective it should be clear that each assump-
tion underlying a hypothesis can actually be viewed as a mea-
sure of model performance that could and (in our opinion)
should (if possible) be explicitly included in the set of measures
F employed in the statement of the hypothesis. Of course, it
may not be easy or possible to formalize all assumptions as
quantitative measures, and such assumptions may still need to
be treated in the postcalibration evaluation. We illustrate these
issues in the context of the simple case study presented below.

6. Case Study
6.1. The Model and Data

The following case study illustrates that the multiobjective
calibration procedure is relatively simple to implement and
provides useful information which improves our understanding
of the problem. We apply the methods described above to the
calibration of the SAC-SMA model using historical data from
the Leaf River watershed (1950 km2) located north of Collins,
Mississippi. A reliable 40-water-year data set that represents a
variety of hydrological conditions and phenomena is available
for this watershed. The SAC-SMA model has 16 parameters to
be determined by the user (see Table 2). It is typical for three
of these parameters to be fixed at prespecified values, while the

remaining 13 must be determined by the process of calibration.
The upper and lower bounds that define the initial uncertainty
in the parameter estimates for this watershed are listed in
Table 2. Following the recommendations of Yapo et al. [1996],
8 consecutive water years of data spanning the wettest years on
record were selected for model calibration. Because the SAC-
SMA model and the Leaf River data have been discussed
extensively in previous work [e.g., see Burnash et al., 1973;
Peck, 1976; Kitanidis and Bras, 1980a, b, c; Brazil and Hudlow,
1981; Brazil, 1988; Sorooshian and Gupta, 1983; Sorooshian et
al., 1982, 1983, 1993; Duan et al., 1993, 1994; and Yapo et al.,
1996], we will not describe the details of these here. Note that
the model has only a single output flux to be matched; there-
fore the case study provides a relatively simple illustrative test
of the multiobjective calibration method.

6.2. Statement of the Hypothesis/Selection
of the Objective Functions

Because the purpose of this case study is illustrative, we shall
employ a rather simple calibration hypothesis, that it is possi-
ble to find values for the model parameters that can provide
acceptable optimal (minimal) values for the residual standard
deviation (measured by DRMS), the residual bias (measured
by BIAS), and the residual whiteness (measured by the nega-
tive of NSC). Further, we will not make any assumptions re-
garding the underlying distribution of the errors. Note that in
the classical context of single-objective calibration [e.g., Yapo et
al., 1996] the measure chosen to be minimized might typically
be the residual variance, while bias and whiteness would re-
main as part of the underlying assumptions to be tested via
postcalibration residual analysis.

These three measures have been selected from Table 1,
giving consideration to the fact that DRMS, TMVOL, absolute
error (ABSERR), absolute maximum error (ABSMAX), and
Nash-Sutcliffe coefficient (NS) are all measures of dispersion
of the model residual around zero and cannot therefore rea-
sonably be considered as unrelated (in the sense mentioned
earlier); note, in particular, that NS 5 1-DRMS2/Var(d). In
fact, a crude test in which all nine of the measures listed in
Table 1 were computed at 500 parameter locations randomly
and uniformly sampled from the entire initial parameter space
indicated that the five measures of dispersion listed above (and
also PDIFF and RCOEFF) were correlated to a degree ex-
ceeding 60.89, suggesting that they tended to measure very
similar characteristics of the hydrograph (e.g., corr{DRMS-
TMVOL} 5 10.99; see Figure 4d). Further, those seven mea-
sures tended to be much less correlated with bias and NSC
(e.g., corr{DRMS-bias} 5 10.09, corr{DRMS-NSC} 5 20.48,
corr{bias-NSC} 5 20.39}; see Figures 4a–4c).

6.3. Calibration Using the Three Objectives

The MOCOM-UA algorithm was used to estimate the Pa-
reto solution space for the three measures DRMS, BIAS, and
NSC. A search population size of 500 points was selected on
the basis of experimental evidence that larger population sizes
gave only marginal improvements in the approximation of the
Pareto solution space [Yapo et al., 1997a, b]. The procedure
used 25,702 function evaluations to converge to an estimate of
the Pareto set. Notice the relative efficiency of the
MOCOM-UA method: while just one single-objective
SCE-UA calibration would require ;5,000–10,000 function
evaluations, the MOCOM-UA algorithm has generated 500
Pareto solutions with only 3–5 times as many function evalu-
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ations. The estimated parameter trade-off region P(Q) is
shown in Figure 5a (each line on the plot represents one of the
500 estimates), and the final hydrograph trade-off region P(Q)
(indicated simply as the range between minimum and maxi-
mum) is compared with the observed data (in log space) in
Figure 5b. Note that the parameter trade-off region (Pareto
solution space P(Q)) is quite small compared to the initial
parameter uncertainty U(Q)). Any parameter set chosen from
within this Pareto space is a good solution in the sense that it
provides a certain trade-off in the minimization of the three
objectives. Any parameter set chosen from outside this Pareto
space is a bad solution in the sense that it will have worse
values for all three objectives than any points within the Pareto
space. The user who requires a best parameter set (or sets) will
need to decide on which kind of trade-off(s) among the objec-
tives is acceptable for the model application on hand.

The hydrograph trade-off space plot (Figure 5b) indicates
that any of the Pareto parameter sets provides extremely good
matching of the medium- to high-flow regions of the hydro-
graph; this is indicated by the narrow hydrograph bounds in
these regions. In contrast, the model seems unable to match (in
a relative error sense) the recession portions of the hydrograph
as well as the flood events; this is indicated by relatively wide
hydrograph bounds and portions where the bounds do not
bracket the observed data. If the model were to be used for
applications requiring accurate estimates of moderate and low
flows (e.g., as input to a streamflow chemistry model or to
estimate biochemical oxygen demand), we suspect that the
model structure may need to be refined. All in all, however, we
can conclude that the model calibration conducted using the

multiobjective procedure has been very successful and that the
calibrated SAC-SMA model can be used for flood forecasting
(its intended role) with a considerable degree of confidence.

6.4. Streamflow Forecasting Using the Calibrated Model

The classical approach to model calibration and flow fore-
casting relies on the selection of a single best parameter esti-
mate and forecast. However, as has been suggested in the
literature [see, e.g., Beven and Binley, 1992], given the relative
abundance of computational power, there is no reason why the
user cannot generate several plausible model forecasts or sim-
ulations associated with the entire set of estimated parameters.
In the context of the multiobjective approach presented here
these plausible model forecasts can be based on a sampling of
parameter estimates from within the Pareto solution space as
illustrated in Figure 5b using range forecasts indicating upper
and lower limits. In addition, sample trajectories related to
minimum DRMS, minimum bias, and minimum NSC, etc. (as
determined through the calibration procedure), could be dis-
played as additional information (not shown in Figure 5 be-
cause the uncertainty in estimation of the peaks flows is al-
ready quite small).

If, however, it is necessary (for practical and computational
reasons) to forecast or simulate a single “most likely” flow
value, the user is faced with the task of selecting from within
the Pareto solution space a specific parameter estimate. This,
of course, will require the subjective assignment of the relative
importance to the various measures to arrive at a best com-
promise solution. To facilitate this process, we are currently
developing graphic visualization techniques that display the

Table 2. Parameters and State Variables of the Sacramento Soil Moisture Accounting (SAC-SMA) Model

Parameters Optimized Description Lower Bound Upper Bound

Maximum capacity thresholds
UZTWM upper zone tension water maximum storage (mm) 1.0 150.0
UZFWM upper zone free water maximum storage (mm) 1.0 150.0
LZTWM lower zone tension water maximum storage (mm) 1.0 1000.0
LZFPM lower zone free water primary maximum storage (mm) 1.0 1000.0
LZFSM lower zone free water supplemental maximum storage (mm) 1.0 1000.0
ADIMP additional impervious area (decimal fraction) 0.0 0.4

Recession parameters
UZK upper zone free water lateral depletion rate (day21) 0.1 0.5
LZPK lower zone primary free water depletion rate (day21) 0.0001 0.025
LZSK lower zone supplemental free water depletion rate (day21) 0.01 0.25

Percolation and other parameters
ZPERC maximum percolation rate (dimensionless) 1.0 250.0
REXP exponent of the percolation equation (dimensionless) 1.0 5.0
PCTIM impervious fraction of the watershed area (decimal fraction) 0.0 0.1
PFREE fraction of water percolating from upper zone directly to

lower zone free water storage (decimal fraction)
0.0 0.6

Parameters Not Optimized Description Fixed Value

RIVA riparian vegetation area (decimal fraction) 0.0
SIDE ratio of deep recharge to channel baseflow (dimensionless) 0.0
RSERV fraction of lower zone free water not transferrable to lower

zone tension water (decimal fraction)
0.3

State Variables Description

UZTWC upper zone tension water storage content (mm)
UZFWC upper zone free water storage content (mm)
LZTWC lower zone tension water storage content (mm)
LZFPC lower zone free primary water storage content (mm)
LZFSC lower zone free secondary water storage content (mm)
ADIMC additional impervious area content (mm)
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decision variables (parameter estimates, associated objective
function values, and hydrographs) in a convenient manner,
allowing the user to “mouse click” on a particular selection
(parameter estimate or objective function weighting) and ob-
serve the simulated hydrograph associated with it. This subjec-
tive procedure will enable the user to apply additional infor-
mation and personal experience to the decision process in an
efficient manner. Many of the systems theoretical develop-
ments in the field of multiobjective decision making can also be
used to advantage [e.g., Laabs and Schultz, 1992; Goicoechea et
al., 1976; Haimes et al., 1975]. A powerful advantage of this
approach is that it can include the classical solution (e.g., best
DRMS parameter estimates) among the several alternatives
provided to the decision maker but does not mask the fact that
on the basis of the available information none of the solutions
is inherently superior to any other.

7. Conclusion
Field measurements, prior information, and manual and au-

tomated techniques for calibration are three techniques used
in parameter estimation for hydrologic models. With the grow-
ing popularity of complex physically based distributed water-
shed models (e.g., land-surface hydrology and hydrochemical
models) the use of more and better field measurements for
specifying model parameters has gained in importance and
attention. However, the requirement for automated parameter
estimation techniques is not going to simply disappear. Our
research experiences suggest that the classical model calibra-
tion paradigm needs serious review and that further progress

will only come about through the implementation of a new and
more powerful paradigm based in part on the ideas advanced
in this paper. In particular, it is necessary to recognize that (1)
the structural errors, arising from the fact that any model is
only an approximation (hopefully reasonable) of reality, can-
not be ignored or treated only as stochastic variables to be
lumped into some output residual, (2) the problem of model
identification and calibration is inherently multiobjective, even
in the case of only one output time series (the application of
least squares and other statistical techniques for model fitting
is largely an attempt to bypass the difficulties inherent in mul-
tiobjective approaches), and (3) there is a real need to be able
to judge the reliability of a model, not as some overall approx-
imate measure but in terms of each model prediction. A fur-
ther issue not addressed in this paper is that the errors in the
input data cannot be ignored.

When these facts are faced head on, it becomes apparent
that there is no objective way in which a unique model solution
can be obtained. Rather, the best that one can obtain using
objective procedures is a model set, specifiable as a region of
the parameter space. In the context of multiple measures of
model performance this model set defines the Pareto solution
set (which is also a minimal estimate of the parameter uncer-
tainty) in which it is not possible to objectively select a specific
parameter set (model) as being superior to any other param-
eter set (model). This Pareto solution space translates into a
trade-off range in the model predictions (the model is only
capable of, at best, indicating the range in which the field
observation might be observed). The size and properties of this

Figure 4. Four selected plots showing the 500 randomly generated points projected in two-objective sub-
spaces.
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model set and the sizes and properties of the trade-off range in
the model predictions are characteristics which will help in the
evaluation of the adequacy or inadequacy of the model. Anal-
ysis of these features will provide insight into the manner in
which the model needs to be improved and into the confidence
that can be ascribed to the model predictions.

The results of our preliminary investigation of this new
model calibration approach have been presented in this paper.
Through a case study we have shown that the multiobjective
calibration approach is practical and relatively simple to im-
plement and can also provide useful information that helps to
understand better the limitations of a model. Research into a
number of theoretical and experimental issues related to this
work is ongoing. This includes (1) the proper manner for
selecting the set of measures of model performance, (2) the
sensitivity of the results to the number of measures and the
amount of data, and (3) the extension of the multiobjective
theory to account for stochastic uncertainties in the observa-
tion data, thereby providing more than a minimal estimate of
model uncertainty. In collaboration with colleagues the mul-
tiobjective calibration approach is currently also being applied
to some of the more sophisticated physically based hydrologic
models such as soil-vegetation transfer schemes (SVATS) and
hydrochemical watershed models. The results of these studies
will be reported in due course. We welcome dialog on these
and other ideas related to hydrologic model calibration. The
code for the MOCOM multiobjective optimization algorithm
is available from the first author by request (send email to
hoshin@hwr.arizona.edu).
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