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Information related to land cover is immensely important to global change science. In the past decade, data
sources and methodologies for creating global land cover maps from remote sensing have evolved rapidly.
Here we describe the datasets and algorithms used to create the Collection 5 MODIS Global Land Cover Type
product, which is substantially changed relative to Collection 4. In addition to using updated input data, the
algorithm and ancillary datasets used to produce the product have been refined. Most importantly, the
Collection 5 product is generated at 500-m spatial resolution, providing a four-fold increase in spatial
resolution relative to the previous version. In addition, many components of the classification algorithm have
been changed. The training site database has been revised, land surface temperature is now included as an
input feature, and ancillary datasets used in post-processing of ensemble decision tree results have been
updated. Further, methods used to correct classifier results for bias imposed by training data properties have
been refined, techniques used to fuse ancillary data based on spatially varying prior probabilities have been
revised, and a variety of methods have been developed to address limitations of the algorithm for the urban,
wetland, and deciduous needleleaf classes. Finally, techniques used to stabilize classification results across
years have been developed and implemented to reduce year-to-year variation in land cover labels not
associated with land cover change. Results from a cross-validation analysis indicate that the overall accuracy
of the product is about 75% correctly classified, but that the range in class-specific accuracies is large.
Comparison of Collection 5 maps with Collection 4 results show substantial differences arising from
increased spatial resolution and changes in the input data and classification algorithm.
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© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Global land cover maps provide thematic characterizations of the
Earth's surface that capture biotic and abiotic properties and that are
closely tied to the ecological condition of land areas. Because surface
properties affect biosphere–atmosphere interaction, accurate land
cover information is required to parameterize land surface processes
in regional-to-global scale Earth system models (Bonan et al., 2002b;
Ek et al., 2003; Running & Coughlan, 1988; Sellers et al., 1997; Sterling
& Ducharne, 2008). Further, humans depend heavily on goods and
services provided by terrestrial ecosystems (Foley et al., 2005), and
the global area of land dominated by humans has expanded rapidly in
the last 100 years (Ellis & Ramankutty, 2008; Goldewijk, 2001;
Ramankutty & Foley, 1999; Sanderson et al., 2002; Vitousek et al.,
1997). As a consequence, land use and land cover modification by
humans are among the most important agents of environmental
change at local to global scales and have significant implications for
ecosystem health, water quality, and sustainable land management
(Foley et al., 2005; Lubchenco, 1998). Reliable information regarding
the state of global land cover is therefore essential.

Until about fifteen years ago, global land cover datasets were based
on pre-existing maps and atlases compiled from ground surveys,
national mapping programs, and highly generalized biogeographic
maps (Matthews, 1983; Olson, 1982; Wilson & Henderson-Sellers,
1985). In the 1990's, global datasets derived from the AVHRR made it
possible to map large scale land cover for the first time based on land
surface properties observed from remote sensing (DeFries et al., 1995;
Defries & Townshend, 1994; Hansen et al., 2000; Loveland et al., 2000;
Stone et al., 1994; Townshend, 1998). As newer moderate resolution
remote sensing data sources have emerged (e.g., MODIS, SPOT
VEGETATION, MERIS), substantial effort has been focused on
developing improved characterizations of global land cover. The
current generation of global land cover products include the GLC2000
product produced from SPOT VEGETATION (Bartholome & Belward,
2005), theMODIS Collection 4 Land Cover Product (Friedl et al., 2002),
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the MODIS Collection 4 Vegetation Continuous Fields product
(Hansen et al., 2002), and most recently, the GlobeCover product
produced using data from MERIS (Arino et al., 2008).

As each of these datasets have been produced, new approaches
have been developed to solve the unique and substantial challenges
associated with global land cover mapping. The GLC2000 and Glob-
Cover products were largely developed using unsupervised classifica-
tion techniques, while theMODIS land cover product uses a supervised
approach. TheMODISVegetation Continuous Fields product also uses a
supervised approach, but maps continuous values of vegetation cover
at each pixel instead of discrete classes. In each case, unique technical
approaches and solutions have been brought to bear on the problemof
mapping land cover at very large scales using remote sensing.

In this paper we describe the MODIS Collection 5 Land Cover Type
product, which has recently become available to the scientific
community. The reprocessing model adopted by the MODIS science
team is invaluable because it allows changes to be implemented to
algorithms and input data based on experience gained from previous
collections. Collection 5 is the latest version of the Land Cover Type
product and includes significant changes relative to the Collection 4
product. Here we describe the methods and datasets used to create
the Collection 5 product, focusing on changes that have been made to
the algorithm and datasets relative to Collection 4.
Table 1
Classifications included in the MOD12Q1 product.

Shaded boxes indicate no corresponding class relative to IGBP; numbers in parentheses indicat
2. Overview of Collection 5 algorithm refinements

The MODIS land cover product is designed to support scientific
investigations that require information related to the current state
and seasonal-to-decadal scale dynamics in global land cover proper-
ties. The product consists of two suites of science datasets. MODIS
Land Cover Type (MCD12Q1; Friedl et al., 2002) includes five main
layers in which land cover is mapped using different classification
systems. Hereafter, we refer to this as the MLCT product. The MODIS
Land Cover Dynamics product (MCD12Q2; Zhang et al., 2006) includes
seven layers, and has been developed to support studies of seasonal
phenology and interannual variation in land surface and ecosystem
properties. The Collection 5 land cover dynamics product is described
elsewhere (Ganguly et al., in press). Here we discuss the land cover
type product only.

The MLCT product consists of five different land cover classifica-
tions (Table 1) that are produced for each calendar year. These layers
include the 17-class International Geosphere–Biosphere Programme
classification (IGBP; Loveland & Belward, 1997); the 14-class Univer-
sity of Maryland classification (UMD; Hansen et al., 2000); a 10-class
system used by the MODIS LAI/FPAR algorithm (Lotsch et al., 2003;
Myneni et al., 2002); an 8-Biome classification proposed by Running
et al. (1995); and a 12-Class plant functional type classification
e IGBP class numbers used in this paper. Classification acronyms are defined in Section 2.



Fig. 1. Flow chart for MOD12Q1 production.
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described by Bonan et al. (2002a). In addition to these classification
layers, the MLCT product provides the most likely alternative IGBP
class and a continuous measure of “classification confidence” at each
pixel (McIver & Friedl, 2001). A lower spatial resolution climate-
modeling grid (MCD12C1) is produced at 0.05° spatial resolution for
users who do not require the spatial detail afforded by the 500-m land
cover product. TheMCD12C1 product provides the dominant land cover
type as well as the sub-grid frequency distribution of land cover classes
within each 0.05° cell. For practical reasons the discussion here focuses
on the IGBP layer.

The MODIS land cover type product is produced using an ensemble
supervised classification algorithm. The base algorithm is a decision tree
(C4.5; Quinlan, 1993), and ensemble classifications are estimated using
boosting (Freund&Schapire, 1996;Quinlan, 1996; Schapire et al., 1998).
The use of boosting is central because it allows the algorithm to derive
estimates of class-conditional probabilities for each class at each pixel
(Friedman et al., 2000;McIver & Friedl, 2001). As in Collection 4, we use
an ensemble of ten boosted decision trees to generate the product.
Results from the ensemble decision trees are post-processed to correct
classification results for biases inherent to the decision tree algorithm
caused by specific properties of the training sample, and to exploit
extant information related to the geographic distribution of global land
cover (Section 4). The basic processing steps of this algorithm are
presented schematically in Fig. 1, and details are provided elsewhere
(Friedl et al., 1999, 2000a, 2002; McIver & Friedl, 2001, 2002). Here we
describe modifications that are unique to Collection 5. Specifically, we
focus on: (1) revisions to the MODIS land cover training site database,
(2) changes to input features, (3) refinementof ancillary data layers that
are merged with ensemble decision tree results to produce the final
product, and (4) methods we have developed to tune, refine, and
stabilize classification results across different years.

3. Data

3.1. Training data

High quality training data are essential to the MLCT algorithm, and
each reprocessing of the MODIS land cover product has provided an
invaluable opportunity to revise and augment the MODIS land cover
training site database. Because of the importance of this database and
because source data can become out-of-date, maintenance of the site
database is an important and ongoing process. The ability to update
and revise this database afforded by periodic reprocessing has been
highly beneficial and has resulted in a mature database of land cover
training sites.

Training data for the Collection 5 product includes 1860 sites
distributed across the Earth's land areas (Fig. 2, Table 2). To ensure
that the database captures a wide range of geographic and ecological
variability, the database is periodically intersected with a map of
Olsen's ecoregions, which allows under- or unsampled regions to be
identified (Friedl et al., 2002). Each site consists of a polygon, deli-
neated on Landsat or higher resolution imagery via manual interpre-
tation, where the land cover is uniform and representative of one IGBP
class. The size of sites range from 1 500-mMODIS pixel (∼0.2 km2) to
376 pixels (∼80 km2), but the distribution is highly skewed towards
smaller sites: the median size is 16 pixels and 1741 sites cover fewer
than 50 MODIS pixels.

For Collection 5, each site was reviewed using Landsat or higher
spatial resolution data. As part of this process, we systematically
updated our database of image data and replaced older Landsat
images acquired in the 1990's with Landsat7 or orthorectified
Geocover 2000 imagery. In recent years, the availability of imagery
via GoogleEarth© has been extremely valuable as a supplemental data
source. In addition to removing sites with low quality labels,
correcting labeling errors, and improving the ecological representa-
tion of the site database, substantial effort was devoted to adding
sites in regions where the database had poor representation, and to
reducing the size of larger sites. This latter activity was particularly
important because spatial correlation within sites leads to significant
redundancy in the training data.

Table 2 summarizes the distribution of sites and training data by
continent and IGBP land cover type in Collection 5, and Fig. 3 shows
the frequency distribution of training sites and pixels in Collection 5
alongwith differences between each in Collections 4 and 5. Because of
its geographic extent and variability, agriculture (class 12) is by far the
most heavily sampled class. Wetlands, which are highly diverse at
global scales, are also heavily sampled. Deciduous needleleaf forest
(class 3), on the other hand, is somewhat under-sampled because it is
difficult to identify representative sites for this class at the scale
required for site delineation. The most obvious differences between
Collection 4 and Collection 5 are decreases in the number of sites or
pixels for the evergreen forest, wetlands, agriculture, and agricultural
mosaic classes (classes 1, 2, 11, 12, and 14, respectively), and modest
increases in the number of sites or pixels for deciduous broadleaf
forests and closed shrublands (classes 4, 6). A substantial number of
savanna and woody savanna (classes 8, 9) training sites were added,
but the total number of training pixels in these two classes decreased.
Note that while the number of MODIS training pixels did not
substantially change relative to Collection 4, the total area repre-
sented by these pixels has decreased four-fold because of the
increased spatial resolution used in Collection 5. This change also
reflects a focus on using smaller, high quality sites in Collection 5
relative to previous collections.

3.2. Input data and features

Input features used in the MLCT algorithm include spectral and
temporal information from MODIS bands 1–7, supplemented by the
enhanced vegetation index (EVI; Huete et al., 2002). We also include
Collection 5 MODIS Land Surface Temperature (LST;Wan et al., 2002),
which was not used in previous Collections. For bands 1–7 and to
compute the EVI, we use nadir BRDF-adjusted reflectance (NBAR)
data provided by the MODIS BRDF/albedo product (Schaaf et al.,
2002). This product provides surface reflectance measurements that
are normalized to a consistent nadir view geometry based on BRDF-
models of surface anisotropy, thereby minimizing the effect of
variable view geometry in surface reflectance data.

Collection 5 NBAR data are produced on a rolling 8-day interval
based on 16 days of MODIS surface reflectance data at a spatial



Fig. 2. Map of training sites (identified by dots) used to create the MODIS land cover type product.
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resolution of 500-m. The Collection 4 product was produced at 1-km
spatial resolution at 16-day intervals (note that the spatial resolution
of the MODIS sinusoidal grid is actually 463.313-m and 926.625-m;
1000-m and 500-m are used by convention). This change has two
positive implications for the MLCT product. First, the availability of
500-m NBAR data provided the basis for increasing the spatial
resolution of the MLCT product to 500-m in Collection 5. Second,
because theMLCTalgorithmaggregates8-dayvalues to 32-dayaverages
(to reduce data volumes and using a quality assurance-weighted
averaging procedure), fewer missing values caused by clouds and other
sources are present in the input features relative to Collection 4.

As in Collection 4, the Collection 5 MLCT product is generated on a
calendar year basis. For each calendar year, algorithm inputs include
twelve sets of 32-day average NBAR, LST and EVI data. In addition,
annual metrics (minimum, maximum and mean values) for the EVI,
Table 2
Frequency distribution for training site pixels by IGBP class and continent.

IGBP
class

NA SA AF EA

Site Pixel Site Pixel Site Pixel Site

1 43 529 0 0 0 0 69
2 2 41 80 1990 14 236 11
3 0 0 0 0 0 0 25
4 23 222 18 728 12 355 60
5 28 291 3 61 0 0 72
6 18 286 21 375 15 337 20
7 34 530 18 526 27 624 31
8 33 339 13 396 41 791 40
9 17 170 27 282 34 700 22
10 35 756 26 509 10 274 39
11 42 1285 29 562 45 830 40
12 76 2094 40 812 29 579 161
13 – – – – – – –

14 25 86 27 70 30 295 53
15 6 205 11 516 0 0 7
16 4 103 2 35 48 3880 30
17 12 392 7 198 8 276 24
Total 398 7329 322 7060 313 9177 704

NA = North America; SA = South America, AF = Africa; EA = Asia; AU = Australia and
therefore not included in the table.
LST and NBAR bands are also included as inputs, providing a total of
135 features. In this way, the algorithm is able to exploit information
related to the phenology and temporal variability characteristic of
land cover types that complements the spectral information provided
by MODIS (Friedl et al., 1999; Lloyd, 1990; Loveland et al., 1995;
Townshend et al., 1987).

Depending on the location and time of year, MODIS input data
can include substantial levels of missing data arising from clouds
(especially in the tropics) and low illumination and polar night in the
northern high latitudes. C4.5 provides robust algorithms for coping
with missing features (Quinlan, 1993). However, if a substantial
proportion of the input features are missing, the reliability of classi-
fication results degrades. To be conservative, if the number of missing
features at a pixel exceeds 84 features, the pixel is not classified. In this
situation, the pixel is filled using the most recent Collection 5 label. If
AU Total Mapped
area (km2)

Pixel Site Pixel Site Pixel

1036 2 23 114 1588 4,136,838
143 24 403 131 2813 13,469,653
755 0 0 25 755 2,718,250

1033 0 0 113 2338 2,042,995
597 0 0 103 949 6,074,390
261 13 458 87 1717 2,506,826

1036 5 82 115 2798 20,181,252
497 11 181 138 2204 13,589,431
277 10 197 110 1626 8,612,734
870 8 227 118 2636 15,158,441
670 13 274 169 3621 1,651,294

4670 21 317 327 8472 12,041,134
– – – – – 656,263

289 4 8 139 748 8,622,136
154 2 17 26 892 15,725,424
866 6 129 90 5013 18,300,756
982 4 113 55 1961 2,063,628

14136 23 2429 1860 40131 147,551,454

Pacific islands. Note that class 13 (urban) was mapped separately and training data is



Fig. 3. Barplots showing the frequency distribution of training sites and pixels in Collection 5 along with differences in the number of training sites and pixels between Collections 4
and 5. Numbers on horizontal axis refer to IGBP classes, provided in Table 1.
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the problem is persistent (i.e., no Collection 5 values), the pixel is
filled using Collection 4 data. This situation is rare, and affects only a
very small number of pixels.

4. Post-processing of ensemble decision tree results

4.1. Overview of issues

Aswealluded toabove, post-processing refinements areapplied to the
ensemble decision tree output to create the final Collection 5 land cover
product (Fig. 1). The specific adjustments we have developed address
limitations imposed by: (1) the spectral–temporal information content of
MODIS data, and (2) biases that are inherent to tree-based classification
models. Fig. 4 presents an example from the south central United States
centered on the lower Mississippi valley (MODIS tile h10v05, roughly
1100 km×1100 km) that provides a step-by-step illustration of the
effects and importance of the refinements we describe below.

The limitations identified above arise from two fundamental
assumptions of the ensemble decision tree classification algorithm:
(1) that the distribution of the training data is representative of the
population, and (2) that the features are able todistinguish the classes in
the training data. In the present case, neither of these assumptions is
strictly valid. The training site databasewe have compiled is designed to
capture geographic and ecological variability, but it is unrealistic to
claim or assume that it captures the complete range of variability in
global land cover. Similarly, the class frequency distribution of the
trainingdata does not reflect the global distribution of land cover classes
(Fig. 5). Further, even if both these conditions were met, the land cover
class definitions used in theMLCT productwere developed in support of
science communityneeds, but not on a thorough understanding ofwhat
classes MODIS can consistently identify with high accuracy. As a
consequence, the spectral–temporal separability of many classes is
ambiguous (e.g., savanna versus woody savannas versus grasslands), a
problem that is compounded by the inclusion of mixture classes (e.g.,
agricultural mosaic, mixed forests).

For pixels where the training set does not include a good exemplar
site or where the spectral–temporal information is equivocal,
supervised algorithms over- (under) predict more (less) frequent
classes in the training data, leading to bias and errors in classification
results (McIver & Friedl, 2002). Below we describe two algorithm
refinements we have implemented to address these limitations. In
both cases we adjust the class-conditional probabilities produced
from the ensemble decision trees using Bayes' rule in association with
parameterized prior probabilities.

4.2. Sample bias correction

The first issue, classification bias imposed by the training data, we
address via a sample bias correction. This issue is illustrated in Fig. 5,
which shows the global frequency distribution for both the training
sites and pixels, along with land areas in each class based on our final
classification. Clearly, there are substantial differences, the most
obvious being agriculture andwetlands. Fig. 4 illustrates how this bias
propagates into classification results. Specifically, because they are
over-sampled in the site database relative to other classes, agriculture
(shown in yellow) and wetlands (shown in dark blue) are over-
represented in the ensemble decision tree results. In simple terms,
because the classifier is optimized to maximize classification accuracy
based on the training data, classification results are biased to over-
predict the most common classes in the training data. Conversely,
rarer classes in the training data tend to be penalized.

To correct this problem, the class-conditional probabilities estimated
by the boosted decision trees are adjusted using Bayes' Rule based on
prior probabilities prescribed to be inversely proportional to the number



Fig. 4. Image panel for MODIS tile V05H10 (south central United States) showing classification results at each stage of processing. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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of training samples in each class. This has the effect of reducing the
posterior probabilities (estimated via Bayes' Rule) for classes that are
over-sampled in the training data, and vice versa. Fig. 6 demonstrates
how the frequency of over-sampled classes is reduced in the predictions
by applying this correction, and vice versa for under-sampled classes. The
Fig. 6. Barplots showing for each IGBP class: the proportion of training pixels in each
class (left bar), the prior probabilities used to implement the sample bias correction
(middle bar), and the resulting effective overall likelihood for each class (right bar). The
net effect is to reduce the overall likelihood of more heavily sampled classes (and vice
versa), thereby reducing the bias imposed by the training sample.

Fig. 5. Barplots showing for each IGBP class the proportion of: training sites (left bar);
training pixels (middle bar), and final mapped classes (right bar).



Fig. 7. Parameterization used to prescribe the prior probabilities for classes 12 and 14
(agriculture and agricultural mosaic) based on cropping intensity from Ramankutty et al.
(2008).
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topmiddle panel of Fig. 4 illustrates how this adjustment ismanifested in
the Collection 5 classification results for MODIS tile number h10v05: the
reduction in over-sampled classes (agriculture; wetlands) relative to the
ensemble decision tree results is clearly evident. In this context, it is
important to note that the magnitude of the bias introduced by the
sample distribution depends on the degree to which each class is
separable in the feature space, and classes that are highly separable are
relatively unaffected by the training sample distribution.

4.3. Spatially explicit prior probabilities

The second issue, inadequate class separability compounded by
mixture classes, we address by adjusting ensemble decision tree results
Fig. 8. Map of prior probabilities (× 100) for agriculture (class 12) and agricultural mosaic
Fig. 7. Red and pink areas indicate regions with high likelihood of high intensity agriculture
(For interpretation of the references to colour in this figure legend, the reader is referred to
based on spatially explicit prior probabilities, which are parameterized
using extant information derived from two main sources. The first
source of information is the MODIS Collection 4 MLCT product. Using
Collection 4 maps, probabilities are estimated at each pixel using a
moving window algorithm that computes the regional proportion (i.e.,
the likelihood) for each class. In Collection 4, we used a 201 by 201
window (∼35,000 km2) derived from the IGBP DISCover dataset
(Loveland et al., 2000) to do this. In Collection 5, we use a 151 by 151
window (∼20,000 km2). This step assumes that the Collection 4 data
capture the regional variability in land cover, and that the regional
frequency distribution therefore provides a good basis for parameter-
izing the prior probability for each IGBP class at each pixel.

As part of this process, the prior probabilities for agriculture (class
12) and agriculturalmosaic (class 14) derived from themovingwindow
are replaced with probabilities parameterized using the dataset
produced by (Ramankutty et al., 2008), which furnishes estimates of
global cropping intensity at 0.05° spatial resolution (roughly 30 km2 at
the equator) for year 2000. Because this dataset uses remote sensing
data sources merged with local census data, it provides an excellent
basis for parameterizing the prior probabilities for these two classes at
much higher spatial resolution than the moving window procedure
described above affords. To parameterize the prior probabilities for
classes 12 and 14, we use a Gaussian function of cropping intensity
centered at 50% to prescribe the local likelihood for class 14 (agricultural
mosaic), and a sigmoidal function of cropping intensity for class 12
(agriculture), where the prior probabilities for each class intersect at
60% (Fig. 7). In this way, the probabilities are consistent with the
definitions for each class. Also, the maximum prescribed prior
probability associated with classes 12 and 14 does not exceed 0.5,
thereby reducing the likelihood that the classifier results simply
replicate the results of (Ramankutty et al., 2008). After replacing the
values for classes 12 and 14 in this fashion, the vector of prior
probabilities at each pixel is normalized to sum to 1.0.

Fig. 8 shows theglobal distributionof the resultingprior probabilities
for the agriculture and agricultural mosaic classes, and the net result of
applying the merged spatial prior probabilities at a regional scale is
shown in the top-right panel of Fig. 4. Like the sample bias adjustment,
the main effect is to reduce over-prediction of over-sampled classes in
(class 14) derived from Ramankutty et al. (2008) using the parameterization shown in
. Blue and purple areas indicate areas dominated by less intensive agricultural mosaics.
the web version of this article.)



Fig. 9. Schematic showing how the value of the spatial prior probability confidence
parameter influences the magnitude of the prior probabilities used to create the final
map. The leftmost bar is the original prior probability. The subsequent bars, from left to
right, show the adjusted priors for c=0.9, 0.5, and 0.1, respectively. The net effect, as c
varies from 1 to 0, is to progressively adjust the priors towards a uniform distribution
(i.e., c=0 is equivalent to equal priors).
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the training data. Closer inspection also reveals increased grasslands in
the northwest quadrant and a smaller proportion of agricultural mosaic
throughout the tile. As for the sample bias correction, highly separable
classes are relatively unaffected by this correction.
Fig. 10. Differences in the number of pixels mapped in each class at global scale by the ensem
described in Section 4. (For interpretation of the references to colour in this figure legend,
4.4. Tuning classification results

Ideally, we wish to minimize the influence of the spatial prior
probabilities and to maximize information from MODIS Collection 5
data. To do this, a tuning parameter is used that controls how heavily
the prior probabilities at each pixel are weighted. This “confidence
parameter” (c), which ranges from 0–1, is used to apply a linear
transformation that weights the spatial priors more or less heavily,
depending on the value of c. Specifically, the prior probabilities at
each pixel are adjusted using the following expression:

PðiÞ = PðiÞ + ð1−PðiÞÞ × ð1−cÞ; ð1Þ

where P(i) is the prior probability for class i at any given pixel. After
the adjustment has been applied, the vector of P(i)'s at each pixel are
normalized to sum to 1.

The effect of using different values for the confidence parameter c
is illustrated in Fig. 9 for a hypothetical pixel in the northeastern
United States. The first bar for each class shows the unadjusted prior
probability (i.e., the most likely classes are 1, 4, 5, 12, and 14), and
the subsequent bars show the adjusted probabilities for c values of
0.9, 0.5, and 0.1, moving from left to right. The net effect, as c varies
from 1 to 0, is to linearly adjust the prior probabilities for each class
from their original distribution to a uniform distribution (i.e., equal
priors for all classes). For Collection 5, we use a value of 0.25 for c,
which is conservative andwas determined by extensive trial and error
using selected tiles spanning a range of continents and land cover
types.

The upper right and bottom left panels of Fig. 4 show the result of
fusing the ensemble decision tree and spatial prior probabilities before
and after applying the confidence parameter (i.e., c=1, 0.25 respec-
tively). As we indicated above, it is desirable to reduce the weight of
the spatial priors as much as possible; i.e., we wish to maximize the
information from Collection 5 and minimize the algorithm's depen-
dence on information from Collection 4 and Ramankutty et al. (2008).
ble decision trees (blue) and after applying the post-processing adjustments (orange)
the reader is referred to the web version of this article.)



Fig. 12. Proportion of pixels changing from year-to-year from 2001–2005, before
and after applying stabilization.
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Figs. 4 and 9 reveal that by using a relatively low value for c, the net
effect is quite modest. The final step is to merge the results from the
sample bias correction and the spatial prior adjustment, which is shown
in the bottom middle panel of Fig. 4.

Fig. 10 shows the global class frequency distribution before and
after applying the sample bias and spatially explicit prior probability
adjustments. Overall, the adjustments change 6.5% of pixels. However,
these adjustments are not distributed uniformly. Agriculture is the
most common class mapped by the ensemble decision trees, but is
reduced by over 50% once the adjustments have been applied. The
mapped areas for deciduous broadleaf forests, closed shrublands, and
wetlands are also reduced as a result of the sample bias and spatial
prior adjustments. These changes are balanced by increases in the
area mapped for all other classes, with the largest increases in
grasslands, savannas, open shrublands, mixed forests, and agricultural
mosaic.

5. Special cases: urban land use, wetlands, and deciduous
needleleaf forests

In addition to the post-processing described above, experience
from previous MODIS collections has demonstrated that several
classes are particularly problematic and difficult to map. In particular,
wetlands and deciduous needleleaf forests tend to be over-repre-
sented, even after the adjustments described above are applied. To
correct this, we have identified thresholds (lower boundaries) for
posterior probabilities that are required for a pixel to be labeled as
wetland or deciduous needleleaf forest. If this threshold is not met,
the label is replaced with the next most likely class.

For deciduous needleleaf forests we applied a threshold of P>0.7,
which was determined based on extensive trial and error. Applying
this threshold substantially reduced errors of commission associated
with this class. Wetlands, on the other hand, presented substantial
errors of omission and commission. To reduce errors of commission,
we required aminimum posterior probability threshold of P>0.75. To
reduce errors of ommission, the algorithm examines the decision tree
results (i.e., prior to applying the adjustments described in Sections 4.2
and 4.3) and retains pixels with very high class-conditional
probabilities for wetlands (P>0.9). This is required because wetlands
are relatively rare and are frequently small in extent. As a
consequence, the wetlands class tends to have low prior probability
outside of large wetlands complexes. Further, Fig. 3 shows that
wetlands (class 11) are relatively heavily sampled in the site database.
The net effect of both the sample bias and spatial prior adjustments is
therefore to impose low prior probabilities for this class, leading to
errors of omission, particularly in regions where wetlands are not
spatially extensive. Using the strategy described above, we eliminate
Fig. 11. Urban land cover (in yellow) overlaid on a Landsat scene for Guangzhou, China:
interpretation of the references to colour in this figure legend, the reader is referred to the
many spurious wetland pixels arising from oversampling in the
training set, but retain high confidence wetland pixels predicted by
the classifier prior to post-processing adjustments. In cases where the
criteria described above are not met, the maximum likelihood class is
replaced with the secondmost likely class. Extensive inspection of the
resulting maps in association with high-resolution imagery indicates
that these strategies provide the best qualitative compromise between
errors of omission and commission associated with the wetlands and
deciduous needleleaf classes.

We have implemented a similar set of adjustments to improve
representation of water in inland areas, particularly along coastlines.
These adjustments affect a small proportion of pixels. Specific details
are beyond the scope of this paper, but visual inspection of results
clearly reveals the benefit from these adjustments. Future versions of
the product will use a newly created land-water mask that should
resolve much of this problem.

Urban land areas present a particularly difficult case. Urban cores
tend to be sparsely vegetated and are often difficult to distinguish
from barren and sparsely vegetated land areas. Conversely, suburban
land areas are easily confusedwith natural vegetation classes. Further,
the density and form of urban areas at global scales vary widely with
climate and socio-economic factors. In Collection 4, we addressed
these issues by mapping urban land areas as a separate class using
prior probabilities based on a combination of gridded population data
and the DMSP nighttime lights dataset (Schneider et al., 2003). In
Collection 5, we use a different approach. Specifically, global urban
(a) Landsat-based classification, (b) MODIS Collection 5, (c) MODIS Collection 4. (For
web version of this article.)



Table 3
User and producer accuracies, standard errors, and 95% confidence intervals for
Collection 5 IGBP classes based on cross-validation.

IGBP land
cover class

Producer's accuracy (%) User's accuracy (%)

PA Std. err. CI− CI+ UA Std. err. CI− CI+

1. 89.8 2.3 85.3 94.4 78.0 5.3 67.5 88.6
2. 92.6 2.4 88.0 97.2 83.1 3.2 76.8 89.5
3. 67.3 10.9 45.8 88.7 90.4 4.6 81.4 99.4
4. 68.9 6.2 56.7 81.0 75.9 5.3 65.6 86.3
5. 76.2 5.7 65.1 87.3 53.1 6.1 41.1 65.1
6. 63.4 5.9 51.9 74.9 47.0 5.5 36.1 57.8
7. 48.3 6.2 36.1 60.5 74.1 5.2 63.8 84.4
8. 45.2 4.1 37.2 53.3 34.3 4.5 25.4 43.2
9. 22.6 4.4 13.9 31.3 39.0 6.0 27.2 50.8
10. 73.6 4.1 65.7 81.6 55.9 4.2 47.6 64.2
11. 70.6 4.2 62.4 78.7 96.4 1.8 92.7 99.9
12. 83.3 2.0 79.4 87.1 92.8 1.5 89.8 95.8
14. 60.5 5.7 49.3 71.7 27.5 3.6 20.5 34.6
15. 75.6 10.9 54.4 96.9 96.8 2.3 92.2 100.0
16. 95.8 1.4 93.1 98.4 92.7 2.1 88.5 96.8
17. 96.6 1.9 92.8 100.0 99.3 0.4 98.6 100.0
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land areas were mapped using an ecoregion-based stratification with
eighteen strata, where training data and supervised classifications
were developed and tuned to each stratum. Because of the
fragmented form of many urban areas, the higher spatial resolution
used in Collection 5 provides a significantly improved representation
of urban land use. This is visually evident from inspection of the map
product (Fig. 11), and is confirmed by a validation based on Landsat-
derived maps of urban land use for 135 cities. Full details are provided
in (Schneider et al., in press).

6. Stabilization of results across years and cross-walking
classification schemes

The final component of the MLCT algorithm includes two ele-
ments: reducing year-to-year variability in classification results and
creating the additional layers to the IGBP classification. Reducing the
amount of interannual change in classifications is a particularly diffi-
cult challenge because classification results in heterogeneous areas
and ecotones are unstable and tend to toggle year-to-year between
similar classes. As we described above, this problem arises because
many landscapes include mixtures of classes at 500-m spatial resolu-
tion and because the spectral–temporal signature of some land cover
classes is not easily separable in MODIS data. Further, year-to-year
variability in phenology and disturbances such as fire, drought, and
Table 4
Confusion matrix for Collection 5 IGBP classes based on cross-validation.

Training
site label

Classification output label

1 2 3 4 5 6 7 8

1 1426 13 40 16 74 1 3 225
2 19 2550 0 90 52 18 0 46
3 2 0 508 2 19 0 3 10
4 0 23 11 1611 64 24 0 217
5 103 24 143 250 723 3 0 21
6 0 21 11 0 1 1086 519 149
7 0 0 1 0 0 179 1351 9
8 35 44 22 291 14 131 64 997
9 0 0 11 5 0 53 27 276
10 0 3 0 0 0 140 430 66
11 2 48 7 0 2 0 0 2
12 0 0 0 0 0 9 64 52
13 0 0 0 0 0 0 0 0
14 1 28 1 73 0 47 22 134
15 0 0 0 0 0 0 1 0
16 0 0 0 0 0 20 314 0
17 0 0 0 0 0 0 0 0
insect infestations present a highly variable system that is difficult to
consistently characterize globally at annual time scales. As a con-
sequence, classification results at global scales can vary substantially
from one year to the next (Fig. 12). While most of these changes
involve classes that are ecologically proximate and arise from poor
spectral–temporal separability in MODIS data (e.g., mixed forest and
deciduous broadleaf forest; grassland and open shrublands), it is
desirable to reduce the amount of spurious year-to-year change in the
maps.

To address this, the MLCT algorithm imposes constraints on year-
to-year variation in classification results at each pixel. To do this, we
use the posterior probability associated with the primary label in each
year. If the classifier predicts a different class from the preceding year,
the class-label is changed only if the posterior probability associated
with the new label is higher than the probability associated with the
previous label. To avoid propagating incorrect or out-of-date labels in
areas of change, we apply this procedure using three-year windows.
In this way, we perpetuate high quality labels, account for the
possibility of land cover change, and reduce the amount of
interannual variation in labels to about 10% (Fig. 12). Note, however,
that this level of change is still well above the amount of actual global
land cover change. Thus, land cover change should not be inferred by
differencing the MLCT product across years.

The final step in creating the MLCT product is generating the UMD,
LAI/FPAR, 8-Biome, and Plant Functional Type layers. This is
accomplished by cross-walking the IGBP layer to each classification
scheme using the associated posterior probabilities in combination
with global classifications for leaf type (broadleaf, needleleaf),
phenology (deciduous, evergreen) and crop type (cereal, broadleaf).
The logic behind this process provides internal consistency among
classes across the different classification systems.

7. Cross-validation analysis of accuracy

Toprovide aquantitativeassessmentofmapaccuracy,weperformed
a 10-fold cross-validation analysis using the training site database. This
method is widely used to assess classification accuracy when indepen-
dent validation data are not available. To do this, the training site
database was stratified into 10 unique subsets, eachwith 186 randomly
selected sites. To avoid spatial correlation in training and test data, sites
(not individual pixels) were used as the sampling unit (Friedl et al.,
2000b). Using this approach, ten classifications were performed using
theMLCT algorithm, each based on a unique combination of 9 subsets to
train the data, and using the remaining subset as a “test” set. In thisway,
every pixel in the database was classified based on an independent
9 10 11 12 13 14 15 16 17

0 0 31 0 0 0 0 1 0
0 0 276 6 0 11 0 0 0

10 0 7 0 0 0 0 0 0
30 3 100 14 0 23 0 0 0
5 2 68 5 0 8 2 0 3

98 225 70 116 0 5 8 7 0
23 116 1 32 0 5 0 104 0

691 77 202 246 0 82 0 16 0
367 95 31 54 0 20 0 0 0
213 1938 40 414 0 26 111 77 0

4 5 2406 19 0 0 0 0 0
25 118 60 6963 0 84 66 2 61
0 0 0 0 0 0 0 0 0

130 22 105 498 0 402 0 0 0
0 13 0 0 0 0 580 4 0

27 14 0 4 0 0 0 4802 1
0 0 12 0 0 0 0 0 1831



Fig. 13. Barplots showing the number of pixels in each class in Collection 4 (blue) and Collection 5 (red). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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trainingset. In this context, it is important tonote that because the cross-
validation runs are based on 90-percent random samples of the training
data, they are likely to have modestly lower predictive accuracy than
the classifications used in operational production of the product. Thus,
the classification accuracies and standard errors reported here should
be conservative.

Because the analysis used sites as the basic sampling unit, estimates
for standard errors reported below are based on cluster sampling
(Cochran, 1977; Stehman, 1997). Confusion matrices and other quan-
tities related to classification accuracy are well-described in the liter-
Fig. 14. Proportion of pixels derived from each clas
ature andwill not be discussed here, except to indicate thatwe followed
well-established community protocols used for this type of analysis
(Foody, 2002; Strahler et al., 2006). Space does not allow a detailed
presentation and we are preparing a separate paper that presents a
more complete characterization of results from this analysis. Here we
present an overview of results from 2005, which are representative of
results from the multi-year record.

The overall accuracy across all classes in the 2005 map is 74.8%.
The error variance on this estimate is 1.3%, yielding a 95% confidence
interval of 72.3–77.4%. User and producer accuracies (Table 3) are
s in Collection 4 for each class in Collection 5.



Fig. 15. Maps showing the geographic distribution of major differences in Collection 4 versus Collection 5 for key classes. Upper left: Percentage total change in 50 ×50km cells: brown = 70–100%; beige = 30–70%; white = 0–30%. Upper
right: Forests (classes 1–5); Lower left: Agriculture. Lower right: Shrublands. Color key: orange = same in Collections 4 and 5; blue = Collection 4 only; green = Collection 5 only.
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generally greater than 70%, but some classes show especially low
accuracies. In particular, open shrublands, woody savannas and
savannas exhibit low producer accuracies, while mixed forests, closed
shrublands, savannas and woody savannas, grasslands and agricul-
tural mosaic show low user accuracies. On a more positive note,
the forest classes (1–5) show generally good accuracies, as did agri-
culture. Not surprisingly, the water, snow and ice, and barren and
sparsely vegetated classes showed high user and producer accuracies.
Note that the urban class was not included in this analysis. A sepa-
rate analysis using a large sample of independent validation sites
indicates that the accuracy of this class is about 93% (Schneider et al.,
in press).

Table 4 presents the confusion matrix produced by the cross-
validation analysis and helps to explainmany of the patterns observed
in Table 3. In particular, it is clear from Table 4 that the source of low
user and producer accuracies, and by extension most of the error in
the map, arises from confusion among a subset of ecologically similar
classes. Confusion between savannas and woody savannas (classes 8,
9) is substantial. Woody savannas are also confused with forest
classes 1 and 4, and agricultural mosaic (class 14), and open
shrublands are confused with the closed shrublands, grasslands, and
barren and sparsely vegetated classes. These patterns demonstrate
that classification errors are largely concentrated among classes that
encompasses ecological and biophysical gradients, and that are quite
similar both functionally and in terms of their spectral–temporal
properties. They also suggest that depending on user needs, it may
make sense to improve map quality by aggregating classes (e.g.,
classes 8 and 9).

8. Comparison with Collection 4 land cover type

To conclude our analysis, we present an overview of major
changes in the mapped distribution of land cover classes in Collection
5 relative to Collection 4. We summarize the between and within-
class differences, along with geographic patterns in these differences.
To make this comparison, we compare data for 2004 (the last year the
Collection 4 data were produced) using Collection 4 data resampled to
500-m to allow direct comparison with Collection 5 results.

Collection 5 presents a substantially different representation of
global land cover relative to Collection 4. Overall, about 31% of the
Earth's land surface is labeled differently. These differences can be
attributed to a number of different sources. First, changes to the
algorithm, input features, and training data lead to different results.
Second, Collection 5 NBAR data provide a four-fold increase in spatial
resolution. Third, many of the differences between Collections 4 and 5
are among classes that are geographically, ecologically, and spectrally
similar. This last point is closely related to the first two: higher spatial
resolution and refined training and input data provide a better basis in
Collection 5 for distinguishing among classes in heterogeneous
landscapes relative to Collection 4. Conversely, areas with large
expanses of uniform cover (e.g., sub-tropical deserts, undisturbed
tropical forests, etc) are relatively unchanged.

Fig. 13 presents a barchart showing the number of 500-m pixels
classified in each of the IGBP classes in Collections 4 and 5. The area
occupied by most classes changed by roughly 5–15% (note that the
differences do not reflect the total change, but only changes in the
total area occupied by each class). Open shrublands, which was by far
the largest class in Collection 4, decreased substantially. Conversely,
agricultural mosaic doubled relative to Collection 4. Wetlands, a small
but important class, tripled in area.

Fig. 14 presents amore detailed characterization of the differences.
For each IGBP class in Collection 5, this figure shows the proportion of
pixels derived from each IGBP class in Collection 4. Some classes in
Collection 5, for example classes 1, 2, 7, 15, and 16, are relatively
consistent with Collection 4. The remaining classes, on the other hand,
show substantial diversity in their Collection 4 IGBP class labels.
However, close inspection shows that many (but not all) of the
differences reflect changes among similar classes, as we described
above. For example, most of the “changed” pixels in class 5 (mixed
forests) were labeled as other forest classes in Collection 4. Similarly,
many pixels labeled as class 8 (woody savannas) in Collection 5 were
previously labeled as one of the forest classes, woody savannas, or
grasslands in Collection 4, which together encompass a gradient in
tree cover and climate regimes.

By mapping the locations where Collections 4 and 5 differ in their
class labels, geographic patterns in the results presented in Figs. 13
and 14 become clearly evident (Fig. 15). Space does not allow a
detailed presentation of these patterns and here we focus on three
main cover types: agriculture, forests, and wetlands. The area mapped
as Forests (classes 1–5) in Collection 5 generally decreased, both in
the high latitudes and in the tropics. In both regions, forests in
Collection 4 are widely replaced in Collection 5 with woodland classes
(savannas, woody savannas) that are representative of high latitude
and tropical woodland and forest ecosystems. Extensive regions of
open shrublands in subarctic and sub-tropical regions in Collection 4
were replaced by the grassland and barren and sparsely vegetated
classes, except in the high arctic, where open shrublands expanded.
The area occupied by agriculture decreased in central Eurasia, parts of
tropical Asia, and the Sahel in Collection 5, but increased in the central
United States, Europe, and China. In all three cases, much of the
difference was associated with changes to and from the agricultural
mosaic class.

9. Discussion and conclusions

The Collection 4 MODIS land cover type product was publicly
released in 2004. In the intervening years, the algorithm and datasets
used to produce this product have been substantially revised. As a
result, the Collection 5 product, which was released in late 2008, is
considerably different from the Collection 4 product. The goal of this
paper is to document the main changes that have been made to the
algorithm and to provide a general characterization of how the
Collection 5 product differs from Collection 4.

The most important change in Collection 5 is that the MODIS Land
Cover Type Product is being produced at 500-m spatial resolution.
This alone is a major refinement and substantially modifies the
product relative to Collection 4. In addition, as we have documented
in this paper, the MLCT algorithm and input data have been heavily
revised. Training data and ancillary datasets used to produce the
product have been updated, input features have been modified, and
the methods used to post-process the ensemble decision tree results
(sample bias and spatial prior probability adjustments) have been
refined. The Collection 5 product includes a new urban layer that was
produced independent of the main algorithm using methods
specifically developed for global mapping of urban land cover, and
class-specific fixes designed to improve mapping of wetlands and
deciduous needleleaf forests were implemented. Finally, a method
was developed to help stabilize classification results and reduce the
level of spurious year-to-year change in the datasets. Cross-validation
accuracy assessment indicates an overall accuracy of 75%, with
substantial variability in class-specific accuracies.

The net result is a substantially different and revised representa-
tion of global land cover relative to Collection 4. The higher resolution
afforded by 500-m MODIS data in combination with changes to the
algorithm produce considerable differences between Collections 4
and 5. The most prominent differences are that the area mapped as
forests and open shrublands decreased, while the area mapped as
grassland, savannas and agricultural mosaic classes increased. More
generally, differences between Collections 4 and 5 are ubiquitous
outside of the forested tropics, sub-tropical deserts, and polar ice
sheets, regions where the Earth's land surface is characterized by large
tracts of uniform land cover.
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Moving forward, we plan to address a number of important chal-
lenges in Collection 6. First, we plan to migrate the classification system
used by MODIS to a system that is consistent with the FAO Land Cover
Classification System (Ahlqvist, 2008; Jansen & Di Gregorio, 2002). This
will provide a classification that conforms to international community
standards, and which provides a more effective distinction between
land cover and land use. In addition, we plan to reduce the need for
extensive tuning, adjustments, and class-specific solutions that are
currently part of the algorithm. In the final analysis, it will probably
never be possible to create high quality global land covermaps in a fully
automated fashion without some manual adjustment and refinement.
However, greater automation and repeatability is a desirable goal and
the Collection 5 version of the MODIS land cover product represents a
significant step forward in this regard. Indeed, with each new collection
of MODIS data we move closer to this objective.

The land cover remote sensing community is rapidly moving to-
wards higher spatial resolution products based on Landsat and other
medium resolution sensors at continental and larger scales. Ten years
ago, the prospect of global operational processing of 500-mMODIS data
was formidable. As the MODIS land cover and other products have
demonstrated, robust, repeatable, and semi-automated mapping of
global land cover and other land surface variables from remote sensing
is both feasible and useful to the science community. Moving forward,
significant challenges exist in merging high frequency moderate
resolution observations from sensors like MODIS with lower frequency
but higher spatial resolution sensors such as Landsat. Experience gained
from producing the MODIS global land cover type product should
support and inform this next generation of higher resolution products.
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