Skip to Main Content

Researchers Aim to Produce Naturally Strengthened Wood

Tian Li, assistant professor in the School of Mechanical Engineering, has received a $958,000 grant from Advanced Research Projects Agency-Energy (ARPA-E) to develop a transformational “living” wood with the strength of steel, self-healing capabilities and combined carbon-sequestering benefits from wood and microbes.

This first-of-a-kind concept entails harnessing the natural activities of microbes and their interaction with wood scaffolds to fundamentally change how the wood is processed and engineered for future sustainable construction.

A cross section of balsa wood shows how wood is a porous material.
A cross section of balsa wood shows how wood is a porous material.

“We are harnessing the microbe properties that are already there in nature,” Li said, adding that this process will enable a new type of structural material that can store ambient carbon for high performance.

Other members of the Purdue team are Fu Zhao, associate professor in the School of Mechanical Engineering, and Eva Haviarova, professor of wood products engineering in the Department of Forestry and Natural Resources. In addition, a team from Michigan State University will lend expertise to the project.

Being highly porous, wood is ready for filling, creating opportunities to be strengthened.

“The right type of microbes build inside the hollow channels and convert carbon dioxide from the air to biominerals so channels will be filled up with minerals,” Li explained. “By filling up this empty volume in wood, you’re going to have improved mechanical strength and flame resistance because the air pockets aren’t there anymore. Also, wood is inherently very hydrophilic. By having those minerals converted by the microbe, the wood is more moisture resistant.”

Besides its high porosity and ease of combustion, one common drawback of wood is its susceptibility to imperfections. Living wood solves that problem.

“Sometimes wood has cracks. They could be internal and impossible to be seen. The microbe will be able to detect cracking, take the carbon dioxide, and fill up the cracks to prevent propagating,” Li said.

Haviarova, co-PI on the project, believes that their efforts also will promote and invigorate the local forest products industry.

“For example, in Indiana, private landowners own approximately 80 percent of the timberland. These hardwood forests generate a lot of high-quality wood resources, but the low-quality material is still underutilized,” Haviarova said. “Only a fraction of these forests is managed because it is not feasible to extract and process low-value and low-quality wood species. Excessive woody biomass and fast-spreading invasive species in these forests prevent healthy forest function.

“There is an urgent need to develop innovative value-added wood products that will utilize abandoned low-quality wood and promote forest management. Similarly, accumulated woody biomass in the U.S. western coniferous forests is one of the causes of extreme forest fires. Without higher-value products, there is no motivation to utilize this resource. When dead trees burn or decompose, they release even more carbon into the atmosphere. But potentially, this material could be converted into renewable engineered wood products used in more advanced building construction.”

Larger commercial buildings are predominantly made of steel and concrete — non-renewable materials that require high embodied energy consumption, elevated carbon emission during production, limited design flexibility and low carbon storage capability during their lifetimes, Zhao said.

The research team hopes to contribute to developing a local building material that can sequester the maximum amount of carbon and utilize local resources, Haviarova said.

“The intrinsic scalability of both wood and the microbe will eventually help with the deployment of the technology,” Li said.

Research for this project, which is set to begin in fall 2022, will be conducted at the Flex Lab, 25,000 square feet of space designed to adapt to creative and innovative research, and the Ray W. Herrick Laboratories, 83,000 square feet of space devoted to large-scale testing of mechanical engineering initiatives.

Article shared from Purdue College of Engineering News

Featured Stories

Jarred Brooke gives a presentation on forest management for deer
Ohio River Valley Woodlands and Wildlife Workshop Offers Chance to Learn From Extension Specialists

Do you want to learn how to get the most out of your property? Make plans to attend the 2024 Ohio...

Read More
Forest Canopy
Complex tree canopies help forests recover from moderate disturbances

Extreme events wipe out entire forests, dramatically eliminating complex ecosystems as well as...

Read More
Alex Dudley receives her award for Outstanding Undergraduate Student for the North Central Section of The Wildlife Society.
Dudley Receives TWS Outstanding Wildlife Undergraduate Student Award

Alex Dudley, a senior double major in wildlife and forestry, was honored with the Outstanding...

Read More
The Purdue block P with snow background.
The College of Agriculture welcomes 11 new faculty members

The Purdue College of Agriculture welcomes 11 new faculty to campus, kicking off the start of the...

Read More
Snowy Day
From Slayter Hill to the Great Lakes, Midwesterners feel effects of climate extremes

Behind climatologist Melissa Widhalm’s desk is a framed painting of one of Purdue...

Read More
View of the 12 Apostles on the Great Ocean Road in Melbourne; Lauren Wetterau takes a selfie while doing reef flat surveys; view of the landscape from the Karunda Scenic Railway
FNR Field Report: Lauren Wetterau Caps Purdue Experience Studying Abroad in Australia

Before Lauren Wetterau graduated with her degree in wildlife in December, she had one more...

Read More
To Top