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Abstract

We explore the relationship between precision agricul-

ture (PA) technology adoption and technical efficiency 

using the 2016 USDA Agricultural Resource Management 

Survey (ARMS). Efficiency gains from PA are likely cumu-

lative, that is, the true impact of precision farming depends 

on the integration of complementary tools. To examine the 

efficiency benefits of different PA bundles, we perform a 

two-step analysis. First, we use cluster analysis to identify 

distinct producer groups based on patterns in PA tech-

nology adoption. These producer groups map naturally 

onto the classic technology adoption curve (laggards, late 

majority, early majority, innovators). Second, we use sto-

chastic frontier analysis (SFA) and stochastic meta-frontier 

analysis (SMFA) to estimate differences in technical effi-

ciency between PA adoption groups. We find that farms 

with advanced PA technology bundles are significantly 

more technically efficient than non-adopters. Differences 

in technical efficiency are not found to be driven by hetero-

geneous production technologies, but rather inefficiencies 

in input usage at the farm level. Our results have strong 

implications for farm consolidation in US agriculture.
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1  |   INTRODUCTION

Precision agriculture (PA) uses inter- and intra-field variation in soil, topography and climate 
to optimise input application and increase profitability. PA promises to enhance efficiency by 
spatially targeting inputs to where they are most productive, thereby maximising overall out-
put for a given mix of resources. Technologies such as automated guidance systems, variable 
rate technology (VRT), and yield mapping have grown in popularity since their introduction 
in the 1990s, and newer technologies, including unmanned aerial vehicles (UAVs) and multi-
spectral sensors, are being adopted more widely now. Despite the promise of PA technology, 
its impact on efficiency is not well understood. Much of the research on PA adoption evaluates 
technologies independently without considering how producers often pool complementary 
tools to create overarching PA systems. Failure to examine PA collectively provides an incom-
plete picture regarding the benefits of PA adoption.

A growing body of research assesses the profitability of PA adoption (Erickson, Lowenberg-
DeBoer, & Bradford, 2017; Griffin et al., 2004; Lambert, Paudel, & Larson, 2015; Miller et al., 
2018; Schimmelpfennig & Ebel, 2016; Shockley, Dillon, & Stombaugh, 2011). Schimmelpfennig 
(2016) uses ARMS data to show that PA has a small positive impact on farm net returns and 
operating profits, but that benefits vary by technology type. Thompson et al., (2019) find sig-
nificant variation in the benefits perceived by producers from PA adoption, depending on 
the technology. Earlier studies link the success of PA technology to the availability of de-
tailed intra-field information (Bullock & Bullock, 2000; Bullock & Lowenberg-DeBoer, 2007; 
Bullock, Lowenberg-DeBoer, & Swinton, 2002; Bullock et al., 2009; Tenkorang & Lowenberg-
DeBoer, 2008). Farm information is shown to be a complementary input in the use of PA, but 
must first be collected and made actionable to generate benefits (Bullock et al., 1998).

Rather than view PA technologies in isolation, more recent work examines PA technology 
adoption and usage in bundles. Lambert, Paudel, and Larson (2015) use principal components 
analysis (PCA) to identify three PA bundles among US cotton farmers: (i) yield monitors and 
grid soil sampling; (ii) digital maps and farm data software; and (iii) aerial imagery, hand-
held GPS devices, and soil survey maps. Khanna, Epouhe, and Hornbaker (1999) describe PA 
technologies as performing either diagnostic, positioning or application tasks. Extending their 
work, Miller et al., (2018) categorise PA technologies as: (i) embodied knowledge technologies, 
requiring little informational input to be made useful; or (ii) information intensive technol-
ogies, which generate large volumes of data requiring additional analysis to inform future 
production decisions. Ofori, Griffin, and Yeager (2020) show that farmers’ time-to-adoption 
is shorter for embodied knowledge technologies than for information intensive technologies, a 
likely result of the ‘out-of-the-box’ functionality afforded by tools such as GPS guidance and 
section control systems.

Of particular interest is the ability of adopters of different PA technology bundles to im-
prove productivity and input efficiency. Confirming the importance of integrating comple-
mentary technologies, Schimmelpfennig and Ebel (2016) find that adopting VRT alone does 
not generate variable cost savings, but does if bundled with yield monitoring and soil mapping. 
Khanna (2001) finds that sequentially adopting soil testing and variable rate fertiliser can lead 
to higher nitrogen productivity than only soil testing, but that the benefits are heterogeneous.

Technical efficiency, which measures the extent to which a firm achieves its feasible pro-
duction frontier for a given mix of inputs, is commonly used to measure farm productivity. 
A large body of work finds positive technical efficiency benefits associated with agricultural 
technology adoption (Chen, Huffman, & Rozelle, 2009; Mayen, Balagtas, & Alexander, 2010). 
However, in some cases positive efficiency effects may be driven by scale economies enjoyed by 
larger operations (Mugera & Langemeier, 2011; Page, 1984; Xin et al., 2016).

There are two channels through which PA can impact technical efficiency based on the tax-
onomy proposed by Miller et al., (2018). First, embodied knowledge technologies may directly 
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enhance input usage—for example, GPS auto-steer reduces overlap, saving fuel, chemicals, 
and time in the field without sacrificing yield. Second, information intensive technologies de-
liver field data that influence site-specific input decisions—for example, detailed soil nutrient 
maps inform precise nutrient application rates, thus lowering the operation's fertiliser costs 
while maintaining or even increasing output.

McFadden (2017) uses USDA Agricultural Resource Management Survey (ARMS) data 
to estimate the impact of yield and soil mapping on technical efficiency. He finds that the use 
of yield mapping increases technical efficiency whereas soil mapping depresses efficiency, 
though the net effect of adopting both remains slightly positive. One possibility for the un-
expected negative association between soil mapping and efficiency is the omission of other 
relevant PA technologies. The way producers integrate mapping tools with complementary 
technologies as part of a broader PA strategy should be considered. We build on the work 
of McFadden (2017) by including all available PA technologies provided in the ARMS and 
comparing technical efficiencies across technology bundles that reflect producer adoption 
patterns.

The purpose of this study is twofold. First, we use cluster analysis to group producers based 
on their adoption of PA technologies. Second, we use stochastic frontier analysis (SFA) and 
stochastic meta-frontier analysis (SMFA) to compare technical efficiency scores across PA 
bundle adopters. We use the 2016 ARMS, which provides detailed field-level information on 
management practices and resource use for a representative sample of corn producers. Though 
both topics have been approached separately elsewhere in the production literature—Lambert, 
Paudel, and Larson (2015), Miller et al., (2018) and Schimmelpfennig and Ebel (2016) in the 
case of PA bundling, and McFadden (2017) in the case of PA and technical efficiency—the two 
have yet to be examined jointly.

We contribute to the existing literature on PA adoption and technical efficiency by evalu-
ating the impact of PA as practised by US farmers. Ignoring PA bundling fails to capture the 
cumulative impact of PA on efficiency. In the following sections, we provide an overview of 
the 2016 ARMS dataset, describe our methodological approach, summarise our results, and 
discuss their implications.

2  |   USDA AGRICU LTURA L RESOU RCE M A NAGEM ENT 
SU RVEY (ARMS) DATA

The Agricultural Resource Management Survey (ARMS) is a comprehensive, multi-phase sur-
vey conducted yearly by the USDA National Agricultural Statistical Service (NASS) and 
USDA Economic Research Service (ERS). ARMS employs a stratified sampling design and 
assigns sampling weights (expansion factors) to participating farms to create a nationally rep-
resentative sample.1 The first phase of the survey identifies qualifying farms that produce the 
specified commodity. USDA targets a different commodity each year on a rotating basis, typi-
cally every five to six years. Phase II documents management practices such as seed, nutrient 
and chemical application, labour and machinery usage, and technology adoption for a single 
field within the respondent's operation. Output (bushels) produced from the field is also re-
corded, allowing researchers to tie production outcomes to managerial decisions. The Phase 
III questionnaire catalogues farm-level and operator characteristics such as demographics, 
farm size, and ownership structure.2 Nearly two-thirds (65%) of Phase II respondents also 
completed the Phase III survey.

 1Sampling weights represent the inverse of the probability of selection based on NASS’s sampling design.

 2Access to ARMS farm- and field-level data is strictly restricted to protect personally identifiable information.
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TA B L E  1   2016 ARMS summary statistics

N Mean Std. Error

Production variables (ARMS Phase II)

Corn yield Corn yield for the surveyed field in bushels per 
acre

1,594 176.81 1.52

Nitrogen Lbs of commercial and manure nitrogen applied 
to the field

1,594 7249.62 282.64

Pesticides Lbs of herbicide, insecticide, and fungicide active 
ingredients applied to the field

1,594 971.53 39.19

Labour Total hours of paid and unpaid labour used on 
the field

1,594 63.50 2.55

Capital Total recovery cost of capital (equipment and 
machinery) used to grow corn on the field

1,594 5793.02 198.36

Total farm acres Total acres of corn planted by the farm 1,594 654.26 34.75

Field acres Acres of corn planted in the observed field 1,594 48.70 1.53

Irrigated Dummy =1 if the corn field was irrigated 1,594 0.05 0.01

Field rented Dummy =1 if the observed field is rented under a 
cash rent or crop share agreement

1,594 0.49 0.02

Precision Ag variables (ARMS Phase II)

Collect data Dummy =1 if any data collection tools were used 
on the field

1,594 0.66 0.02

Yield monitor Dummy =1 if a yield monitor was used 1,594 0.55 0.02

GPS yield map Dummy =1 if yield monitor data was used to 
create a yield map

1,594 0.32 0.02

Map interpret Dummy =1 if a technical consultant was hired to 
interpret or develop yield or remote sensing 
maps

1,594 0.04 0.01

Soil core data Dummy =1 if data was collected from soil core 
sample tests

1,594 0.20 0.01

Soil sensors Dummy =1 if data was collected from soil sensor 
tests

1,594 0.02 0.00

GPS soil map Dummy =1 if soil data was used to create a map 1,594 0.15 0.01

VR seeding Dummy =1 if variable rate seeding was 
performed

1,594 0.16 0.01

VR fertiliser Dummy =1 if variable rate fertiliser application 
was performed

1,594 0.20 0.01

VR pesticides Dummy =1 if variable rate pesticide application 
was performed

1,594 0.07 0.01

GPS guidance Dummy =1 if GPS guidance tools such as auto-
steer or light bar was used

1,594 0.42 0.02

Drone/UAV Dummy =1 if drone/UAV, aircraft, or satellite 
was used to collect imagery data

1,594 0.04 0.01

Crop sensors Dummy =1 if crop condition sensors were used 1,594 0.03 0.00

Data public Dummy =1 if public data was downloaded from 
online sources

1,594 0.03 0.00

Data computer Dummy =1 if data was accessed on a personal 
computer

1,594 0.33 0.02

(Continues)
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Phase II of the 2016 corn survey provides much greater detail on PA technology adoption 
than the 2010 survey, which was the previous iteration of ARMS for corn. It includes questions 
about the use of yield monitors, GPS mapping, automated guidance systems, and variable 
rate technology (VRT). Producers are also asked what types of farm data they collect from 
the field, the tools used to store and analyse data, and whether a technical consultant is em-
ployed to help interpret data. These questions allow us to observe how farmers combine ‘hard’ 
PA tools (equipment and machinery) with ‘soft’ PA tools (software, GPS maps, and ag-tech 
services).

Summary statistics for variables relevant to this study are shown in Table 1. Means are ex-
panded to represent all corn fields in the United States using NASS-provided expansion 
weights. Our sample consists of 1594 farms that completed the Phase II questionnaire, of which 
1038 also completed Phase III.3 Observed fields represent over 75 million corn acres nation-
wide, equivalent to approximately 80% of 2016’s planted corn acreage. Adoption rates for PA 
technologies are slightly higher than previous estimates from ARMS, indicating modest 
growth in ag-tech usage (Schimmelpfennig, 2016; Schimmelpfennig & Ebel, 2016).

Sixty-six per cent of corn farms collect at least one type of farm data. Due to the greater 
propensity of large farms to engage in precision agriculture (Schimmelpfennig, 2016), data-
collecting farms represent 79% of all corn acres planted. Yield monitors are the most popular 
data collection tool at 55% of corn farms (70% of corn acreage), up from 48% of farms in 2010. 
Using data from yield monitors to generate GPS yield maps is typically the first step taken 
towards making yield data actionable for input decisions. However, only 32% of farms (46% of 
acres) report using yield monitor data to generate GPS yield maps, indicating a disconnect 
between data collection and usage for decision making on some farms. GPS guidance is the 
second most commonly used ‘hard’ PA technology. Use of guidance systems grew from 29% of 
corn farms and 54% of corn acreage in 2010 to 42% of farms and 63% of acres in 2016. The 
difference between farm-level and acre-level growth rates in guidance systems adoption im-
plies that small operations were more likely to adopt the technology after 2010. VRT for 

 3We restrict our sample to those growing corn conventionally and reporting positive production inputs, that is, non-zero values for 
nitrogen, pesticide, capital, and labour. Inclusion of zeros for inputs is shown to significantly bias output elasticities downward in 
Cobb–Douglas production frontier estimation (Battese, 1997).

N Mean Std. Error

Data mobile Dummy =1 if data was accessed on a mobile 
device

1,594 0.14 0.01

Ag-tech company Dummy =1 if data was accessed through an ag-
tech provider website

1,594 0.08 0.01

Share farm data Dummy =1 if farm data was used by an outside 
service provider or extension agent to provide 
crop management recommendations

1,594 0.31 0.02

Operator age Age of the primary farm operator 1,038 57.05 0.51

Operator 
experience

Number of years the primary operator has been 
farming

1,038 32.58 0.53

College Dummy =1 if the primary operator has some 
college (Associates degree or more)

1,038 0.54 0.02

Ownership share 
(%)

Operator's share in the business of the farm field 1,038 86.20 0.75

Notes: Summary statistics represent all corn fields in 2016 using expansion weights provided by USDA NASS. Standard errors are 
estimated using standard delete-a-group jackknife procedure.

TA B L E  1   (Continued)
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seeding, fertiliser or pesticides was used on 26% of corn farms (39% of corn acres) in 2016 com-
pared to 19% of farms (28% of acres) in 2010. PA technology adoption paths are conditional, 
however (Khanna, Epouhe, & Hornbaker, 1999). For example, 57% of farms using variable 
rate fertiliser performed soil core testing in the survey year versus 20% of farms overall. 
Although soil core sampling is considered an ‘entry-level’ PA practice, it has a lower adoption 
rate than yield monitors or GPS guidance, technologies that often come standard with new 
equipment.4

Advanced data collection technologies such as drones, crop sensors, and soil sensors show 
low rates of adoption—likely due to the novelty of these products at the time of the survey. 
However, farms already using well-established PA technologies (yield monitors, GPS guid-
ance, and VRT) are more likely to use advanced data collection practices. Among producers 
that collect some type of farm data, about half share that data with an outside service provider 
or extension agent. One-third of producers access farm data on a personal computer whereas 
14% access their data on a mobile device. The least popular form of data access is through 
an ag-tech company website such as Bayer's Climate FieldView or John Deere's Operations 
Center at just 8% of farms. This is not surprising as ag-tech software platforms were still rel-
atively new in 2016. Like other PA technologies, farm data management tools are dispropor-
tionately used by large farms. Farms that use computers, mobile devices, or ag-tech platforms 
to access their data represent 36% of corn operations, but are responsible for over half of all 
corn acres planted.

3  |   PRECISION AGRICU LTU RE ADOPTION 
CLUSTER A NA LYSIS

Table 1 indicates moderate growth in the adoption of traditional PA technologies among corn 
producers but low diffusion of advanced data collection and analysis tools.5 Despite the com-
plementary nature of these technologies, PA adoption is often done sequentially. Producers 
invest in technologies piece-meal and evaluate their effectiveness before adding more advanced 
tools (Khanna, 2001; Leathers & Smale, 1991; Miller et al., 2017). Khanna, Epouhe, and 
Hornbaker (1999) show that adoption of novel site-specific crop management (SSCM) prac-
tices is conditional on prior adoption of older, simpler technologies. This path dependency in 
PA is driven by a number of factors: uncertainty surrounding the costs and benefits of whole 
package implementation, producer risk-aversion, returns-to-scale, credit constraints, and 
human capital accumulation (Aldana et al., 2011; Feder, 1982; Leathers & Smale, 1991).

Early diffusion of innovation models help explain differences in sequential adoption timing 
across farms. The seminal work by Rogers (1962) predicts that innovations are embraced in 
stages, first by risk-loving innovators and eventually by risk-averse laggards. Mansfield (1961) 
likens the adoption process to an epidemic, spreading gradually as information about the in-
novation is shared with potential users. When innovators are few, information about their 
experience will spread slowly, leading to sluggish take-up (Khanna, Epouhe, & Hornbaker, 
1999). The speed of diffusion in PA—and the shape of its adoption S-shaped curve—will de-
pend on the distribution of farms across adoption groups, operator characteristics, and the 
newness of the technology.

 4Note that the ARMS only asks about soil core testing in the current survey year. Farmers typically perform soil tests every 
3–4 years. The true proportion is likely higher than reported here.

 5Trends in adoption of advanced data intensive PA such as remote sensing and ag-tech software are harder to identify at the 
national level. Most of the ARMS literature on PA adoption focuses on well-established technologies (yield monitoring, GPS 
guidance, soil sampling​, and VRT).
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We apply the path dependency and diffusion of innovation framework to the PA variables 
in ARMS. Though ARMS data is cross-sectional, preventing us from analysing a farm's tech-
nological progression over time, examining adoption patterns across multiple technologies 
makes assessing farms’ state of PA adoption at a given time possible.

We perform an agglomerative hierarchical cluster analysis (HCA) of observations based on 
the PA variables shown in Table 1.6 Ward's linkages method is used to join clusters that mini-
mise total within-cluster variance.7 An important consideration in multivariate analysis is de-
termining the optimal number of clusters (PA groups). We retain four clusters based on the 
scree plot in Figure 1, which shows a distinct ‘elbow point’ in total within-cluster sum of 
squares at the fourth cluster (Ketchen & Shook, 1996).8 Retaining four clusters balances the 
desire to minimise cluster variance with the need to group farms parsimoniously. Inspection of 
the clustering dendrogram confirms this choice (see Figure A1 in the Appendix S1).

Table 2 displays summary statistics for PA, production, and demographic variables by 
cluster assignment. A noticeable pattern emerges with respect to PA adoption across groups; 
clusters correspond to stages in Rogers (1962) classic technology adoption curve. A complete 
lack of PA adoption characterises the 305 farms in cluster 1. Given that yield monitoring 
technology—considered the ‘gateway’ PA device—has been commercially available since the 
early 1990s and often comes standard with new combine harvesters, this group can be safely 
described as ‘laggards’ with respect to PA. Note that although farms in cluster 1 are 29% of our 
sample, they expand to represent 34% of US corn farms based on NASS-provided expansion 
weights, making laggards the largest single segment on the PA technology adoption curve.

Farms in the ‘late majority’ stage (cluster 2) collect farm data and have high rates of yield 
monitoring (68%), but are unlikely to produce GPS yield maps, meaning their yield data is not 
likely to influence future input decisions. Rates of adoption for most other PA technologies 
are similarly low among this group, with the exception of GPS guidance, soil core sampling, 

 6For comparison, a principal components analysis (PCA) was performed to group technologies, rather than farms, based on latent 
relationships in adoption patterns. PCA produces groups of technologies that are generally consistent with the results of our 
cluster analysis (see Online Appendix).

 7Ward's linkage was chosen based on its superior ability to group non-adopters. The Gower dissimilarity method was applied to 
accommodate binary data. Cluster results are robust to different distance methods. Cluster analysis was performed using the 
Cluster package in R.

 8The heuristic ‘elbow method’ chooses the optimal number of clusters via visual inspection of the scree plot. Clusters are retained 
up to the point at which the last substantial drop in total within-cluster sum of squares occurs.

F I G U R E  1   Cluster analysis scree plot
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accessing data on a desktop computer, and data sharing, which are moderately common. The 
late majority cohort is most recognisable for adopting PA passively—for example, upgrading 
to a yield monitor equipped combine but failing to fully utilise the technology.

TA B L E  2   Precision agriculture mean adoption rates by hierarchical cluster assignment

Variables

Cluster

1: Laggards 2: Late majority 3: Early majority
4: Innovators/
Early adopters

(n = 305) (n = 364) (n = 210) (n = 159)

Collect data 0.00 1.00 1.00 1.00

Yield monitor 0.00 0.68 0.98 0.99

GPS yield map 0.00 0.06 0.90 0.97

Map interpret 0.00 0.02 0.08 0.20

Soil core data 0.00 0.19 0.06 0.98

Soil sensors 0.00 0.00 0.01 0.09

GPS soil map 0.00 0.06 0.00 0.94

VR seeding 0.00 0.05 0.35 0.49

VR fertiliser 0.00 0.11 0.31 0.73

VR pesticides 0.00 0.08 0.10 0.24

GPS guidance 0.00 0.40 0.81 0.94

Drone/UAV 0.00 0.01 0.07 0.19

Crop sensors 0.00 0.03 0.06 0.08

Data public 0.00 0.01 0.04 0.13

Data computer 0.00 0.28 0.63 0.83

Data mobile 0.00 0.08 0.27 0.42

Ag-tech company 0.00 0.01 0.19 0.29

Share farm data 0.00 0.41 0.42 0.69

Corn yield 169.60 172.26 189.77 194.15

Nitrogen 4,080.85 6,698.80 10,017.21 12,679.54

Pesticides 530.30 925.14 1,328.70 1,693.63

Labour 43.84 62.48 66.47 100.40

Capital 3,249.41 5,036.89 7,035.86 10,654.42

Total farm acres 277.88 549.80 931.04 1,484.66

Irrigated 0.03 0.05 0.03 0.08

Operator age 59.39 57.58 53.98 54.22

Operator farming 
experience

33.33 33.89 29.61 31.97

College 0.41 0.53 0.69 0.66

Field rented 0.36 0.46 0.59 0.61

Operator ownership 
share

90.96 87.46 80.94 78.70

Notes: Means expanded to represent all corn fields in 2016 using expansion weights provided by USDA NASS. Standard errors 
(omitted) were estimated using standard delete-a-group jackknife procedure. The cluster analysis is performed on all 1,594 
farms that filled out ARMS Phase II. Only the 1,038 farms that completed both Phase II and Phase III are summarised above. 
Differences in PA adoption rates between the full-sample cohort and the restricted sample are negligible.
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Cluster 3 groups farms in the ‘early majority’ stage of the PA technology adoption curve. 
These farms are distinct from late majority farms in both their propensity to use a yield moni-
tor and to create GPS yield maps, suggesting the transition from late to early majority depends 
on the farm's ability to make data actionable. Other notable differences include significantly 
higher rates of variable rate seeding and fertiliser application, GPS guidance, and accessing 
farm data through computers, mobile devices, and ag-tech company websites.

‘Innovators’ or ‘early adopters’ are the least common, representing 13% of all US corn farms. 
These farms have the highest rates of adoption for all forms of PA. In addition to the classic 
PA technologies, innovators are likely to use soil core data, GPS soil mapping, VRT, farm data 
software, and share their data with service providers. Advanced data collection technologies 
such as soil and crop sensors and drones are relatively common among this group. For exam-
ple, nearly one in five early adopters collect aerial imagery via drone or satellite versus 4% of 
all corn producers.

The distribution of farms across groups suggests that the PA technology adoption curve is 
skewed; that is, the diffusion of innovation in ag-tech is occurring relatively slowly among farm 
operators. However, diffusion appears more rapid in terms of planted acreage (Lowenberg-
DeBoer & Erickson, 2019). Figure 2 shows that farms in mature stages of the adoption curve 
represent fewer farms, but are responsible for a greater share of planted corn acreage and pro-
duction. Laggards, by contrast, represent over one-third of US corn farms and are the single 
largest producer group identified, but operate just 21% of 2016’s corn acreage. Conversely, the 
innovator group has the fewest number of farms, but contributes nearly one-fourth of all corn 
production. This is because farms classified as PA innovators are over five times the size of 
laggard farms on average—suggesting there could be significant economies of scale associated 
with PA.

In addition to size, corn farms at different stages of the PA technology adoption curve have 
starkly different production and demographic characteristics. Input application rates are sig-
nificantly higher among farms with high rates of PA adoption. These farms’ operators are also 
younger, more highly educated, and more likely to rent farmland. Differences in corn yields 
across cluster groups suggest that farms actively using PA are more productive. The largest 
productivity jump appears between the late and early majority stages, where corn yields in-
crease by 10%. In the following section, we use stochastic frontier analysis to formally test for 
differences in efficiency between PA groups.

F I G U R E  2   PA adoption group distribution
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4  |   STOCH ASTIC FRONTIER A NA LYSIS

Stochastic frontier analysis (SFA) has been used throughout the agricultural production litera-
ture to estimate farm technical efficiency (Kumbhakar & Lovell, 2000). In the SFA framework, 
output is a function of both a deterministic component (production frontier) and a composed 
error, which is the sum of a stochastic residual and a non-negative inefficiency term. Deviations 
from the production frontier result from random noise (e.g., production shocks) and systematic 
factors that depress input productivity. We adapt the approach taken by Caudill and Ford 
(1993), Caudill, Ford and Gropper (1995), and Reifschneider and Stevenson (1991) (referred to 
as the RSCFG model) as follows: 

where yi is output (total corn bushels) produced by field i. The vector x i contains inputs that shape 
the production frontier including nitrogen fertiliser, pesticides, capital value, labour hours, total 
farm acres, corn production practice (irrigated vs. non-irrigated), and regional dummy variables 
to control for agro-climatic conditions that may shift the production frontier for a given mix of 
inputs. We assume a standard Cobb–Douglas functional form for the production frontier.9

Productive inputs were selected following related literature using ARMS data (McFadden, 
2017; Schimmelpfennig, 2016). Nitrogen fertiliser used is the sum of chemical nitrogen and the 
nitrogen content of manure applied to the field. Pesticide usage is the total pounds of active in-
gredients from herbicides, insecticides, and fungicides applied to the field. Capital value is the 
total recovery cost of machinery and equipment required to produce corn on the field. Field 
labour is measured by the total hours of labour (both paid and unpaid) employed. For regional 
dummy variables, we use the seven farm resource regions designated by USDA Economic 
Research Service (ERS) (Heimlich, 2000).

The stochastic error vi is mean-zero normally distributed whereas ui is non-negative and 
follows a half-normal distribution. Both vi and ui have field-dependent variance structures. 
Assuming heteroscedasticity in both error terms addresses two issues. One, if ignored, hetero-
scedasticity can produce biased and inconsistent estimates of the SFA parameters, and two, 
by parameterising the variance of ui, we can model the determinants of technical efficiency 
(Kumbhakar & Lovell, 2000; Wang & Schmidt, 2002).

The vector zi includes farm and operator characteristics that influence the efficiency, such 
as operator experience, education and land tenure. Measures of PA technology adoption make 
up the vector d i.

Inefficiency can be modelled in the stochastic frontier framework in one of several ways 
depending on the assumed distribution of ui. If ui follows a truncated-normal distribution, 
variables that affect inefficiency can shift its pre-truncated mean (E(ui) = g(zi)), scale its vari-
ance (�2

ui
= f(zi)), or both. However, this is computationally demanding and the log-likelihood 

(1)
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vi∼N

(
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)
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ui

)

cov
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=0

 9A trans-log functional form for the production frontier was tested against the Cobb–Douglas. Results of the trans-log and 
comparison of technical efficiency and inefficiency scores are found in the Online Appendix.
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function is unlikely to converge for a large number of determinants, as in our case (Kumbhakar 
et al., 2017). Moreover, the choice of which variables to include in the conditional mean and 
variance models can become arbitrary. Instead, we opt for the more parsimonious dual-
heteroscedasticity model used elsewhere in the production literature (Hadri, 1999; Hadri, 
Guermat, & Whittaker, 2003; Mayen et al., 2010).

Output-oriented technical efficiency is computed as the ratio of observed output to poten-
tial output, accounting for random noise. It measures the degree to which a farm achieves its 
production potential with a given level of inputs.

To estimate (3) empirically, we use the conditional expectation proposed by Battese and 
Coelli (1988).

Note that by our specification in (2), the expected value of inefficiency is proportional to �2
ui

, 
so we can express the unconditional expectation of ui as a function of zi and di (Kumbhakar 
et al., 2017).

The average marginal effects of demographic and PA adoption variables on unconditional 
ui are shown below.

Note that the coefficients in Θ̂u and �̂u and their associated marginal effects will share the 
same sign, but differ in magnitude depending on the sample average of �̂ui.

We estimate the above likelihood function with STATA’s FRONTIER command, which 
accommodates the dual heteroscedasticity approach and NASS-provided sampling weights. 
All standard errors are computed using the standard delete-a-group jackknife procedure with 
30 replicates. See Dubman (2000) for a detailed explanation of the ARMS variance estimation 
procedure.

Before estimating the stochastic frontier model described above, we estimate an initial 
Cobb–Douglas production function via ordinary least squares (OLS) and test for negative 
skewness in the residual error, that is, ui > 0. See the Appendix S1 for Cobb–Douglas regres-
sion results and a visual of the error distribution. The error skewness parameter of –0.65 fails 
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both the Coelli (1995) and D'Agostino et al., (1990) tests of zero skewness at the 0.01 level, pro-
viding evidence for the presence of inefficiency.

We then estimate a stochastic frontier model explaining inefficiency and error variance 
with individual PA technologies (results shown in Table A7 of the Appendix S1). Out of 18 PA 
technologies and data practices, 12 enter the inefficiency variance model negatively, implying 
a generally positive relationship between PA adoption and efficiency. However, none of their 
associated coefficients are statistically significant at the 0.10 level. Moreover, explaining effi-
ciency using discrete, ungrouped variables fails to capture the sequential nature of PA adop-
tion. Farms at different stages of the PA adoption curve, and that share similar technology 
bundles, may have differences in technical efficiency that go undetected by this specification.

We instead use dummy variables for PA groups as assigned by our hierarchical cluster anal-
ysis, allowing us to estimate the cumulative impact of PA on inefficiency. The laggard group—
farms that have not adopted any PA technologies—forms the baseline for interpreting the 
coefficients associated with the late majority, early majority, and innovators dummy variables. 
As is clear from Table 2, farms at different stages of PA adoption vary across several dimen-
sions. To control for confounding factors that affect inefficiency and PA usage, we include 
several farm and operator characteristics related to operator ability and technology adoption. 
These comprise the operator's years of experience farming, farming experience squared, oper-
ator educational attainment (college and up), whether the observed field is rented (cash rent or 
crop share), and the operator's ownership share in the farm enterprise. We present the results 
of this approach in Table 3.

The sum of estimated output elasticities in Table 3 indicates slightly decreasing returns-to-
scale in the production frontier. A joint Wald test for constant returns-to-scale is rejected at 
the 0.10 level. Coefficients on logged inputs take the expected sign and size with the exception 
of total farm size, which is small in magnitude and statistically insignificant. Irrigated corn 
fields produce an average of 8% less output than dryland corn fields, though the difference is 
not significant at conventional levels. Capital and applied nitrogen have the largest impact on 
production with output elasticities of 0.33 and 0.30, respectively. Regional differences in corn 
production are apparent from Table 3. All regions in the sample have lower average production 
levels relative to the Heartland (i.e., Corn Belt).

The estimated output-oriented technical efficiency index has a mean of 0.81 and a me-
dian of 0.83. This is generally consistent with estimates found elsewhere in the productivity 
literature (Bravo-Ureta et al., 2007) and very similar to those estimated using ARMS data 
(McFadden, 2017). The average inefficiency score (ui) of 0.23 implies that, for the average farm 
in our sample, total corn production falls short of its feasible maximum by 23%. Mean stan-
dard deviations of the random noise and inefficiency terms are 0.38 and 0.30, respectively. 
Systematic inefficiency is responsible for close to 40% of the total error variance, on average. 
Concurrently, we perform a likelihood-ratio test of the null hypothesis that �2

ui
= 0, that is, that 

no inefficiency is present and the OLS estimator is sufficient (Coelli, 1995). The test statistic of 
35.59 rejects the null hypothesis at the 0.01 level.

Table 3 reports the estimated coefficients for the �2
vi

 and �2
ui

 parameterisation shown in 
Equation (2). In general, farm characteristics and PA adoption do not have a significant im-
pact on random error variance. Cash rented or crop-share fields have significantly lower error 
variance. However, a test that the determinants of �2

vi
 are jointly zero cannot be rejected, sup-

porting homoscedasticity in the random noise component of the composite error term.
Conversely, the variance of inefficiency—and consequently, its mean—is related to PA 

adoption. The coefficient for the late majority group (those that collect farm data passively) is 
−0.63 and statistically insignificant. The effect grows in magnitude and significance for more 
advanced PA groups. Relative to non-adopters, log variance of inefficiency falls by 1.13 for 
the early majority group (farms with high rates of yield mapping and GPS guidance) and by 
1.40 for innovators (advanced PA adopters); both effects are significant at the 0.05 level. Farm 
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TA B L E  3   Stochastic frontier model: PA groups based on hierarchical clustering

Variables

Dependent variable: ln total output (corn bsh.)

Estimate Std error z value Pr(>|z|)

Production frontier

ln N 0.30 0.04 6.89 0.00***

ln pest 0.14 0.03 5.42 0.00***

ln labour hrs 0.15 0.04 3.84 0.00***

ln capital 0.33 0.06 5.55 0.00***

ln farm acres 0.03 0.02 1.45 0.15

Irrigated −0.08 0.07 −1.17 0.24

Northern Crescent −0.19 0.05 −3.75 0.00***

Northern Great Plains −0.08 0.07 −1.22 0.22

Prairie Gateway −0.31 0.07 −4.27 0.00***

Eastern Uplands −0.12 0.14 −0.84 0.40

Southern Seaboard −0.64 0.09 −6.93 0.00***

Fruitful Rim −0.45 0.09 −5.15 0.00***

Cons 2.16 0.29 7.48 0.00***

ln sigma v

Operator experience 0.03 0.04 0.87 0.39

Operator experience2 0.00 0.00 −0.82 0.41

College −0.11 0.26 −0.42 0.67

Rent field −0.46 0.22 −2.07 0.04**

Ownership share 0.00 0.00 0.61 0.54

PA – Late majority 0.43 0.38 1.13 0.26

PA – Early majority 0.04 0.25 0.16 0.87

PA – Innovators −0.13 0.38 −0.34 0.74

Cons −2.60 0.72 −3.61 0.00***

Mean sigma v 0.38 0.00 123.73 0.00***

ln sigma u

Operator experience 0.04 0.05 0.74 0.46

Operator experience2 0.00 0.00 −0.73 0.47

College −0.13 0.45 −0.28 0.78

Rent field 0.79 0.45 1.75 0.08*

Ownership share 0.00 0.01 −0.29 0.77

PA – Late majority −0.63 0.43 −1.48 0.14

PA – Early majority −1.13 0.50 −2.23 0.03**

PA – Innovators −1.40 0.59 −2.35 0.02**

Cons −2.66 0.95 −2.79 0.01***

Mean sigma u 0.30 0.00 72.53 0.00***

Mean technical efficiencya  0.81 0.004 212.14 0.00***

Mean inefficiencyb  0.23 0.005 43.57 0.00***

Observations 1,038

Log-pseudolikelihood −487,194.15

Notes: Estimates expanded to represent all corn fields in 2016 using expansion weights provided by USDA NASS. Standard errors 
calculated using standard delete-a-group jackknife procedure.
aOutput-oriented efficiency score computed E(exp(−ui|εi)) following Battese and Coelli (1988).
bInefficiency term computed E(ui|εi) following Jondrow et al., (1982).

***p < 0.01, ** p < 0.05, * p < 0.1.
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and operator characteristics generally take the expected sign with respect to inefficiency but 
lack statistical significance in most cases. Only the positive effect of renting the field enters 
the inefficiency model significantly at the 0.10 level. Although these coefficients are useful 
in determining the directions of the effects of our variables of interest, they are not directly 
interpretable.

Table 4 reports the average marginal effects of each regressor on (unconditional) mean in-
efficiency. Marginal effects are calculated according to the formulas shown in Equation (6) 
and standard errors are constructed using the delete-a-group jackknife procedure.10 All mar-
ginal effects are statistically significant at the 0.01 level. In contrast to other findings (Sabasi, 
Shumway, & Astill, 2019; Wang, 2002) the non-linear effect of farming experience suggests that 
operators early and late in their careers are the least inefficient. An additional year of farming 
experience changes inefficiency by 0.005–0.0001 exper2, which is positive until about 36 years 
and becomes negative thereafter. Although this result appears counterintuitive at first glance, 
it may reflect farm succession patterns. For example, it may be an indication that young farm-
ers initially benefit from human capital and expertise bestowed by the prior generation, but 
then experience a period of deteriorating efficiency when operating independently before they 
gain enough experience of their own. Efficiency gains achieved later in their careers are inher-
ited by the next generation, repeating the cycle.

The average marginal effect of a college education on inefficiency is −0.01, which translates 
to a 4% reduction in inefficiency over farms with non-college educated operators. College may 
be a proxy for superior farming ability where efficient producers are more likely to have higher 
educational attainment. Rented fields have inefficiency scores that are 0.09 (46%) higher than 
owned fields—possibly the result of shorter land tenure. Inefficiency is negatively related to 
the operator's ownership share in the farm, though the effect is small in magnitude.

Table 4 reveals a clear pattern of improved efficiency (reduced inefficiency) as farms ad-
vance along the PA technology adoption curve. Marginal effects represent mean differences 
in inefficiency scores between laggards (non-adopters) and farms with more sophisticated PA 
adoption bundles, conditional on relevant farm characteristics. Inefficiency is 0.07 lower for 
the late majority group than laggards. The difference grows to 0.13 for early majority farms 
and 0.16 for the most innovative farms. Put another way, innovators achieve 16% more out-
put (corn bushels) on average than laggards with the same amount of inputs, conditional on 

 10Specifically, sample average marginal effects are calculated for the full sample and each of 30 replicate samples with adjusted 
replicate weights provided by USDA NASS. For each variable, the squared differences between replicate sample marginal effects 
and the full sample marginal effect are summed to produce the standard error.

TA B L E  4   Average marginal effects on inefficiency (u)

Variables dy/dx Std error z value Pr(>|z|)

Operator experience 0.005 0.000 117.44 0.00***

Operator experience2 −0.00007 0.000 −7764.07 0.00***

College −0.01 0.003 −5.35 0.00***

Rent field 0.09 0.003 33.20 0.00***

Ownership share −0.0002 0.000 −403.93 0.00***

PA – Late majority −0.07 0.002 −29.71 0.00***

PA – Early majority −0.13 0.003 −38.01 0.00***

PA – Innovators −0.16 0.005 −33.87 0.00***

Notes: Average marginal effects of regressors on the unconditional expectation of u, E(ui|zi,di). Standard errors calculated using 
standard delete-a-group jackknife procedure.

***p < 0.01, ** p < 0.05, * p < 0.1.
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relevant covariates. To interpret these effects in context, we report mean technical efficiency 
and inefficiency by PA adoption group in Table 5.

As expected, laggards have the lowest levels of technical efficiency and highest levels of in-
efficiency and efficiency rises at each stage of the PA adoption curve. Differences in mean in-
efficiency scores shown in Table 5 are largely consistent with average marginal effects.11 The 
marginal effect of −0.07 for late majority farms translates to a 26% reduction in inefficiency 
associated with adoption of the most basic PA technology package. Farms in the early major-
ity stage of PA adoption are 46% less inefficient than laggards whereas innovators are 57% less 
inefficient. Comparing mean levels of technical efficiency across PA groups shows that late 
majority farms are 4% more efficient, early majority farms are 10% more efficient, and innova-
tors are 12% more efficient than laggards. Our results show that efficiency gains are the largest 
between the late and early majority stages.

We graph the distributions of technical efficiency and inefficiency by technology adoption 
stage in Figure 3. Figure 3a shows a clear rightward shift in the distributions of technical ef-
ficiency scores for the early majority and innovator groups with high concentrations of farms 
at high levels of efficiency. This pattern is mirrored for inefficiency in Figure 3b. Inefficiency 
scores are centred at the lower tail of the distribution for early majority and innovator farms. 
The spread of these distributions also varies by group. The boxplots in Figure 4 show that, 
not only the mean and median, but also the variability of efficiency and inefficiency improve 
significantly for farms further up the PA adoption curve.

5  |   STOCH ASTIC M ETA-FRONTIER A NA LYSIS

Our analysis up to this point assumes that all farm groups share a common production tech-
nology. This assumption implies two things about farms in different PA groups. One, a com-
mon frontier means that productivity does not vary across farm groups. However, differences 
in productivity may emerge if different bundles of PA technology shift the production frontier 
up (or down). Observed differences in technical efficiency may be driven by differences in the 
underlying production technologies. Second, estimates of technical efficiency and inefficiency 
will be biased if calculated relative to an incorrect frontier (Mayen et al., 2010). A homogenous 
frontier prevents us from disentangling productivity and efficiency gaps between farms and 
across groups.

 11Note that marginal effects are conditional on farm and operator characteristics whereas Table 5 reports unconditional means. 
The slight differences observed between marginal effects and mean comparisons is attributable to this.

TA B L E  5   Mean technical efficiency and inefficiency scores by PA group.

TEa  E(u|ε)b 

Mean Std Dev. Mean
Std 
Dev.

PA – Laggards 0.77 0.10 0.29 0.19

PA – Late majority 0.80 0.07 0.23 0.10

PA – Early majority 0.85 0.05 0.17 0.07

PA – Innovators 0.86 0.04 0.15 0.05

aOutput-oriented technical efficiency score computed E(exp(−ui|εi)) following Battese and Coelli (1988).
bInefficiency term computed E(ui|εi) following Jondrow et al., (1982).
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To test the robustness of our results to this possibility, we adapt the two-step stochastic 
meta-frontier analysis (SMFA) approach proposed by Huang, Huang, and Liu (2014). This 
strategy allows us to compute technical efficiency scores based on group-specific frontiers, 
then test for differences in the underlying production technology for farms at different stages 
of PA adoption by comparing them to a common meta-frontier.

F I G U R E  4   (a) Boxplots of technical efficiency by PA adoption group. (b) Boxplots of inefficiency by PA 
adoption group. Note: Solid line = median, dashed = mean

F I G U R E  3   (a) Distributions of technical efficiency by PA adoption group. (b) Distributions of inefficiency by 
PA adoption group
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In the first step, we estimate stochastic frontier models separately for each PA technology 
group j = 1,⋯, 4.

As before, uij follows a half-normal distribution with variance �2
uij

(
w�

ijΘuj

)
 whereas vij is 

mean-zero normally distributed with variance �2
vij
w�

ijΘvj. Random noise and inefficiency vari-

ances are explained by farm-specific characteristics wij that vary within and across groups. 

Conformability issues in estimating the log-likelihood function limit the variables in wij to 

farm size and operator age. Within-group technical efficiency scores are:

Here, TEij measures how close farm i is to achieving its output potential, given the produc-
tion technology specific to group j. We use predicted output from Equation (7) to fit a com-
mon stochastic meta-frontier that envelops all individual frontiers,

where vM
ij

 is mean-zero normally distributed as N(0, �2
v
) and uM

ij
 is half-normally distributed as 

N+ (0, �2
u
). Both distributions are assumed to have constant variances.12 Technical efficiency rela-

tive to the meta-frontier constitutes the technology gap ratio (TGR), a measure of distance be-

tween group-specific production technologies and the meta-technology available to all farms 

(Battese et al., 2004).

In calculating Equations (9) and (10), we can decompose total inefficiency into farm-level 
technical inefficiency with respect to the farm's chosen technology and shortfalls in efficiency 
due to the production technology itself.

Table 6 shows the results of the group-level stochastic frontier analysis. Constant returns-
to-scale cannot be rejected for laggards and innovators, though farms in the late and early 

(7)lnyij = lnx�ij� j + vij − uij.

(8)TEij =
yij

exp
(
lnx�ij� j + vij

) = exp
(
−uij

)
.

(9)l̂nyij = lnx�ij�
M
+ vM

ij
− uM

ij
,

 12Huang, Huang, and Liu (2014) use environmental characteristics specific to each industry group in their specification of the 
stochastic meta-frontier. As farm groups belong to the same industry and are relatively evenly distributed throughout regions, we 
opt for a homoscedastic error and inefficiency variance. However, our results are robust to different variance parameterisations.

(10)TGRij =
l̂nyij

exp
(
lnx�ij�

M
+ vM

ij

) = exp
(
−uM

ij

)
.
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majority stages report decreasing returns to scale, suggesting PA groups access different pro-
duction technologies. However, results of the pooled stochastic meta-frontier in Table 7 are 
comparable to the homogeneous production frontier estimated in Table 3. The estimate of �2

u
 in 

Table 7 is not statistically different from zero, that is, we do not find evidence of inefficiency in 
the meta-frontier. Table 8 summarises group-specific technical efficiency scores, inefficiency 
scores, and TGRs by PA group.

Although the general pattern of improved technical efficiency and reduced inefficiency at 
advanced stages of technology adoption remains, the SMFA differs from the pooled SFA in 

TA B L E  6   Stochastic meta-frontier analysis: Group-specific production frontiers

Variables

Dependent variable: ln total output (corn bsh.)

Laggards Late majority Early majority Innovators

Estimate
Std 
error Estimate

Std 
error Estimate

Std 
error Estimate

Std 
error

Production frontier

ln N 0.28** 0.06 0.31*** 0.06 0.30*** 0.06 0.19*** 0.06

ln pest 0.08*** 0.04 0.14*** 0.03 0.21*** 0.05 0.10 0.04

ln labour hrs 0.18*** 0.05 0.12*** 0.05 0.31** 0.07 0.12*** 0.09

ln capital 0.41 0.07 0.23 0.09 0.16*** 0.08 0.60 0.12

ln farm acres 0.04 0.07 0.04 0.03 −0.12 0.03 −0.04** 0.03

Irrigated 0.02 0.13 −0.09*** 0.07 −0.07 0.14 −0.24 0.11

Northern Crescent −0.12** 0.09 −0.27** 0.10 −0.12 0.09 −0.12 0.10

Northern Great 
Plains

−0.49*** 0.23 −0.15*** 0.07 −0.03*** 0.06 0.09 0.10

Prairie Gateway −0.25 0.07 −0.40 0.08 −0.47 0.10 −0.20** 0.13

Eastern Uplands −0.07*** 0.19 −0.21*** 0.17 0.22*** 0.24 0.25 0.13

Southern Seaboard −0.83*** 0.16 −0.87*** 0.09 −0.59*** 0.11 −0.12*** 0.18

Fruitful Rim −0.67*** 0.11 −0.42*** 0.10 _ _ _ _

Cons 1.87 0.46 3.06 0.32 3.34 0.36 1.56 0.42

ln sigma v

Farm acres 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Operator age 0.00** 0.02 0.00** 0.02 0.01*** 0.02 0.00 0.02

Cons −2.08 1.02 −2.17 0.95 −2.81 0.90 −1.63 1.13

Mean sigma v 0.31 0.00 0.31 0.00 0.30 0.00 0.33 0.00

ln sigma u

Farm acres 0.00*** 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Operator age −0.04 0.01 0.00* 0.01 0.01 0.03 0.01* 0.03

Cons 0.71*** 0.94 −1.41*** 0.81 −1.89*** 1.92 −5.26*** 3.14

Mean sigma u 0.33 0.01 0.45 0.00 0.27 0.01 0.11 0.00

RTS, Pr(RTS=1)a  0.99 (0.90) 0.85 (0.00) 0.88 (0.00) 0.97 (0.49)

Observations 305 364 210 159

Log-
pseudolikelihood

−173,536.48 −170,196.35 −56,779.29 −18,523.59

Notes: White's heteroscedasticity consistent standard errors shown next to parameter estimates.
aEstimated returns-to-scale for each group. The probability of the Chi-square statistic based on a Wald test for constant returns-
to-scale is shown in parentheses.

***p < 0.01, ** p < 0.05, * p < 0.1.
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two ways. One, the late majority group—farms that tend to adopt yield monitors but little 
else—report lower technical efficiency scores than laggards when evaluated against their own 
unique production frontier. Two, the degree to which the variability of efficiency and ineffi-
ciency shrinks for farms at advanced stages of PA adoption is slightly diminished in the SMFA. 
Figures 5 and 6 illustrate the kernel density and box-plot distributions of efficiency and inef-
ficiency by PA group.

TA B L E  7   Stochastic meta-frontier analysis: Meta-frontier

Variables

Dependent variable: ln total output (corn bsh.)

Estimate Std error z value Pr(>|z|)

ln N 0.29 0.01 21.34 0.00***

ln pest 0.13 0.01 14.05 0.00***

ln labour hrs 0.14 0.01 9.97 0.00***

ln capital 0.33 0.03 12.52 0.00***

ln farm acres 0.00 0.01 0.46 0.56

Irrigated −0.10 0.03 −3.74 0.00***

Northern Crescent −0.20 0.02 −9.22 0.00***

Northern Great Plains −0.06 0.03 −2.17 0.02**

Prairie Gateway −0.32 0.03 −9.54 0.00***

Eastern Uplands −0.12 0.03 −3.78 0.00***

Southern Seaboard −0.66 0.03 −23.68 0.00***

Fruitful Rim −0.50 0.07 −7.28 0.00***

Cons 2.45 0.10 25.47 0.00***

Mean sigma v 0.15 0.00 31.79 0.00***

Mean sigma u 0.00 0.00 16.37 0.00***

Lambdaa  0.00 0.00 0.51 0.30

Observations 1,038

Log-pseudolikelihood 492,156.87

Notes: Estimates expanded to represent all corn fields in 2016 using expansion weights provided by USDA NASS. Standard errors 
calculated using standard delete-a-group jackknife procedure.
aThe percentage of total error variance attributable to inefficiency u.

***p < 0.01, ** p < 0.05, * p < 0.1.

TA B L E  8   Stochastic meta-frontier analysis: Mean technical efficiency, inefficiency, and technology gap ratio 
by PA group

TEa  E(u|z)b  TGRc 

Mean Std Dev. Mean Std Dev Mean Std Dev

PA – Laggards 0.79 0.10 0.26 0.17 0.9997 0.00

PA – Late majority 0.73 0.12 0.35 0.24 0.9997 0.00

PA – Early majority 0.90 0.09 0.12 0.12 0.9997 0.00

PA – Innovators 0.91 0.04 0.09 0.04 0.9997 0.00

Notes: Both technical efficiency and inefficiency are calculated based on group-specific production frontiers shown in Table 6.
aOutput-oriented technical efficiency score computed E(exp(−ui|εi)) following Battese and Coelli (1988).
bInefficiency term computed E(ui|εi) following Jondrow et al., (1982).
cTechnology gap ratio estimated from the meta-frontier.
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However, the meta-frontier analysis confirms the conclusion that efficiency gains are most 
apparent at the early majority stage; early majority farms are 14% more technically efficient than 
laggards and innovators are 16% more efficient than laggards according to the meta-frontier 
approach. Unlike farm-level efficiency measures, TGRs are nearly one for all PA groups. We 
therefore cannot conclude that farms at later stages of the PA technology adoption curve im-
prove their ability to access the meta-frontier production technology (Huang et al., 2014).

We consider several other robustness checks in the supplemental appendix (online). These 
include a test for omitted variable bias resulting from scale economies in the inefficiency and 

F I G U R E  5   (a) Distributions of within-group technical efficiency by PA adoption group via SMFA. (b) 
Distributions of within-group inefficiency by PA adoption group via SMFA

F I G U R E  6   (a) Boxplots of within-group technical efficiency by PA adoption group via SMFA. (b) Boxplots of 
within-group inefficiency by PA adoption group via SMFA. Note: Solid line = median, dashed = mean
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random noise parameterisation and an alternative frontier specification using the trans-log. 
Our main findings are robust to these tests.

6  |   DISCUSSION A N D CONCLUSIONS

Pooled stochastic frontier analysis (SFA) results show statistically significant increases in aver-
age technical efficiency between farms at latter stages of the PA technology adoption curve, 
with efficiency gains exhibiting diminishing marginal returns. Results from a stochastic meta-
frontier analysis (SMFA) confirm the general pattern in average technical efficiency when es-
timated relative to group-specific frontiers. Importantly, the SMFA does not show differences 
in efficiency to be driven by efficiency gaps in the underlying production technologies adopted 
by different groups. This finding suggests that farms that adopt advanced PA technology bun-
dles use inputs more efficiently than laggards, but do not meaningfully change the production 
frontier relative to the industry-wide meta-frontier.

In addition to improvements in mean technical efficiency and inefficiency, we find that the 
variance in inefficiency (�2

ui
) is lowest among early adopters. This is not, however, the case for 

the random error variance (�2
vi

). This implies that farms using comprehensive PA technology 
bundles face less production risk due to inefficiency, but do not face less risk posed by random 
production shocks (e.g., drought). PA technologies may not be risk mitigating in the Just and 
Pope (1979) sense where certain inputs and farm practices attenuate the effects of random 
shocks. Rather, the adoption of PA may reduce the variability of output due to imprecise input 
application (e.g., variable vs. uniform application of nutrients across heterogeneous soil types).

To illustrate the possible mechanism for these findings, consider a farm that combines GPS 
guidance, digital soil maps, and VRT to apply soil nutrients on a site-specific basis while elim-
inating overlap. This farm has the same maximum feasible production for a given mix of inputs 
and is equally exposed to extreme weather events as a farm with no PA technology. However, 
on average, the advanced farm will more closely approach the shared production frontier and 
deviate from it less severely than the farm that does not invest in PA.

Looking at marginal differences between groups, we see that moving from the laggard stage 
with no adoption to the late majority stage—where some data is collected and yield monitors 
are often used—is associated with modest improvements in technical efficiency when evaluated 
against a pooled frontier. However, when estimated relative to their group-specific frontier, 
late majority farms exhibit a significant efficiency deficit relative to all other groups, possibly 
the result of adjustment costs incurred when farms transition from a no technology baseline 
to more advanced technologies. Regardless of estimation method, the largest improvements in 
technical efficiency are observed between the late and early majority stages. Based on a pooled 
SFA approach, mean technical efficiency rises by 6% whereas mean inefficiency falls by 26% 
between the late and early majority stages (see Table 5).

The primary distinction between farms in the late and early majority groups is that of pas-
sive and active farm data usage—particularly the conversion of yield monitor data into GPS 
yield maps. Rates of VRT and accessing data on a computer and sharing farm data show 
moderate growth between these stages. This pattern supports earlier observations that reliable 
information is a necessary input in successful PA implementation (Bullock et al., 2009). It also 
implies that ‘embodied knowledge’ technologies such as GPS guidance—adoption of which 
rises substantially between the late and early majority stages—can improve input efficiency, 
most likely through the elimination of overlap or convenience (Miller et al., 2018; Thompson 
et al., 2019). Another notable distinction is the relatively low rates of soil core testing among 
farms in the early majority group. Considering that over half of early majority farms use some 
form of VRT compared to just 17% of late majority farms, it is likely that variable rate appli-
cation prescriptions are being informed by GPS yield map data.
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In both the pooled SFA and SMFA, we observe small marginal improvements in efficiency 
for farms that advance to the innovators group, which is recognisable for its high rates of 
data collection, mapping, VRT, and data analysis via computers, mobile devices, and ag-tech 
software platforms. Unlike early majority farms, nearly all innovators perform soil core test-
ing and GPS soil mapping. The combination of data collection and analysis with hard PA 
technologies such as variable rate applicators may explain the incremental improvements in 
efficiency at the innovators stage. Large advances have taken place in the ag-tech marketplace 
in recent years. Investment in the ag-tech sector grew by 43% between 2017 and 2018 to nearly 
$17 billion. Of this, about $7 billion was invested in ‘upstream’ startups providing data and 
technology services to the farm (AgFunder, 2019). Our results confirm that integrating these 
novel technologies with well-established PA systems can lead to improved resource alloca-
tions, although the incremental benefits appear to be relatively small.

However, small marginal improvements in efficiency may warrant investment in advanced 
PA and farm data technologies when aggregated over a large scale. Note that although innova-
tors make up only 13% of corn farms, they are responsible for 24% of all US corn acreage due 
to their large average size. The ability of large farms to capture these small efficiency gains may 
increase their competitiveness. The potential for scale economies in PA has strong implications 
for farm consolidation. Investment in PA may be cost-prohibitive for small farms—who for-
feit the potential improvements in productivity—whereas large operations are simultaneously 
more likely to adopt novel PA systems and to enjoy the associated efficiency benefits. Though 
the 2016 ARMS does not directly ask about access to credit, it documents farm debts and 
assets, which vary widely across PA adoption groups. For example, farms classified as innova-
tors carry debt-to-asset ratios that are nearly twice as high as laggards (0.19 vs. 0.11). The im-
plication is that innovators are more willing and able to use financial leverage when investing 
in their farm operations.

Though consolidation in row-crop agriculture has occurred steadily over the previous three 
decades, widespread use of PA among large operations could accelerate this trend, particularly 
in the presence of low operating margins (MacDonald et al., 2018). Moreover, the long-run 
efficiency gains may be more significant than our results imply. As data-intensive technologies 
such as ag-tech software and mobile apps are recent developments (particularly during the sur-
vey period), adjustment costs could disguise the true benefits afforded by these technologies in 
the short run (Silva & Stefanou, 2007).

Our results also highlight the value of integrating data into the PA system. Farm data sat-
isfies the definition of a factor of production in the sense that a given level and proportion of 
hard inputs become more productive if informative field data can be acquired (Berczi, 1981). 
The strong association we find between technical efficiency and active use of yield monitor 
data provides suggestive evidence in support of this claim. Several papers attempt to quantify 
the productive value of information and data in agriculture (Chavas & Pope, 1984; Muller, 
1974; Shapiro & Muller, 1977). The degree to which PA data and information impact output 
will vary by data source, the associated collection costs, and the farmer's ability to make the 
data actionable.

Finally, although our results are robust to alternative specifications and control strategies, 
unobservable factors (e.g., innate farming ability) may nevertheless lead to self-selection of 
farms into different PA technology bundles. We are careful not to interpret our results as 
causal effects, but rather useful associations that can inform farm-level benchmarking and 
technology investment decisions. Policymakers, agribusiness professional, and extension edu-
cators wishing to incentivise PA adoption can use these results to identify farms that are good 
candidates for PA. Future research efforts should address both the inherent self-selection of 
PA technology adoption and the dynamic effects of PA, perhaps using longitudinal farm-level 
data.
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