About

Dr. Mitch Tuinstra is the Wickersham Chair of Excellence in Agricultural Research and Professor of Plant Breeding and Genetics in the Department of Agronomy at Purdue University. He studies how crop plants grow in stressful environments.

mitch-in-field-1-med.jpg

Although farmers have faced the challenges of droughts and heat waves for thousands of years, there is mounting concern that changes in our climate may hamper agricultural productivity in the United States and around the world. Dr. Tuinstra and his collaborators are responding to these concerns with efforts to develop "climate resilient" cultivars of maize and sorghum that will contribute to the adaptation of agriculture to warmer and drier environments. His research focuses on identifying genes and genetic resources that contribute to improved crop performance in stressful environments. This work is done in collaboration with scientists and breeders in North America, Africa and Asia.

Curriculum Vitae

1996   -   Ph.D, Purdue University, West Lafayette, IN - Plant Breeding/Genetics

1993   -   M.S., Purdue University, West Lafayette, IN - Molecular Genetics

1991   -   B.S., Calvin College, Grand Rapids, MI - Biology

[ 2013-present ]   Scientific Director, Institute for Plant Sciences, College of Agriculture, Purdue University

[ 2007-present ]   Wickersham Chair of Excellence in Agricultural Research, Department of Agronomy, Purdue University

[ 2007-present ]   Professor of Plant Breeding and Genetics, Department of Agronomy, Purdue University

[ 2006-2007 ]       Professor, Department of Agronomy, Kansas State University

[ 2001-2005 ]       Associate Professor, Department of Agronomy, Kansas State University

[ 1997-2001 ]        Assistant Professor, Department of Agronomy, Kansas State University

[ 1997 ]                Post-Doctoral Fellow, Department of Agronomy, Purdue University

[ 1994 ]                Teaching Assistant, Department of Horticulture, Purdue University

[ 1994-1996 ]       Research Assistant, Department of Horticulture, Purdue University

[ 1993 ]                Teaching Assistant, Department of Horticulture, Purdue University

[ 1993 ]                Teaching Assistant, Department of Agronomy, Purdue University

[ 1991-1993 ]       Research Assistant, Department of Horticulture, Purdue University

60% Research   -   Plant Breeding and Genetics

10% Teaching   -   AGRY285: World Crop Adaptation and Distribution

30% Administration   -   Scientific Director, Institute for Plant Sciences

Lowell S. Hardin Award for Excellence in International Agriculture – 2023

Crops & Soils Merit Award In Recognition of Outstanding Contribution to Agriculture and the Seed Industry, Indiana Crop Improvement Association – 2022

David C. Pfendler Outstanding Undergraduate Counselor Award, College of Agriculture – 2022

Agronomy Outstanding Counselor – 2017, 2018, 2021, 2022

Wickersham Chair of Excellence in Agricultural Research, Purdue University – 2007, 2015, 2021

Seed for Success, Excellence in Research, Purdue University – 2009, 2013, 2014, 2016, 2018, 2020

Agronomy Outstanding Teacher – 2020

Fellow, American Society of Agronomy – 2017

Fellow, Crop Science Society of America – 2017

Spotlight Educator – Agricultural Council Student Choice Award, College of Agriculture, Purdue University – 2016

Gamma Sigma Delta – Early Career Award – 2001

Student Travel Award, International Society of Plant Molecular Biology – 1996

Excellence in Biological Research Graduate Scholarship, Dow Elanco – 1995

Fellow, Gamma Sigma Delta – The Honor Society of Agriculture – 1994

McKnight Doctoral Fellowship, McKnight Foundation – 1994

American Society of Agronomy

Crop Science Society of America

Sorghum Improvement Conference of North America

National Association of Plant Breeders

North American Plant Phenotyping Network

Tuinstra, M.R. and Al-Khatib, K., Kansas State University, 2019. Acetolactate synthase herbicide resistant sorghum. U.S. Patent 10,519,461. Issue Date: December 31, 2019.

Tuinstra MR, Al-Khatib K. Kansas State University Research Foundation. Acetyl-CoA Carboxylase Herbicide Resistant Sorghum. U.S. Patent No. 9,617,530. Issue Date: April 11, 2017.

Tuinstra MR, Krothapalli K, Dilkes B, Buescher E. Genetic Mutations that Disrupt Dhurrin Production In Sorghum. U.S. Patent No. 9,512,437. Issue Date: December 6, 2016.

Wang, T., Crawford, M.M., Tuinstra, M.R., (2023 – In press). A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers. Frontiers in Plant Science.

Diatta-Holgate, E., Anderson, J.S., Hatch, R., Tuinstra, M.R., Weil, C.W., (2023 – In press). Rapid determination of protein digestibility in sorghum before and after cooking. MethodsX Journal.

Gruss, S.M., Souza, A., Yang, Y., Dahlberg, J. and Tuinstra, M.R., (2023 – In press). Expression of stay‐green drought tolerance in dhurrin‐free sorghum. Crop Science.

Gruss, S.M., Johnson, K.D., Ghaste, M., Widhalm, J.R., Johnson, S.K., Holman, J.D., Obour, A., Aiken, R.M. and Tuinstra, M.R., 2023. Dhurrin stability and hydrogen cyanide release in dried sorghum samples. Field Crops Research, 291, p.108764. https://doi.org/10.1016/j.fcr.2022.108764

Diatta-Holgate, E., Hugghis, E., Weil, C., Faye, J.M., Danquah, A., Diatta, C., Tongoona, P., Danquah, E.Y., Cisse, N. and Tuinstra, M.R., 2022. Natural variability for protein digestibility and grain quality traits in a West African Sorghum Association Panel. Journal of Cereal Science, p.103504. https://doi.org/10.1016/j.jcs.2022.103504

Simons, J., Herbert, T., Kauffman, C., Batete, M., Simpson, A., Katsuki, Y., Le, D., Amundson, D., Buescher, E., Weil, C., Tuinstra, M.R., Addo-Quaye, C., 2022.  Systematic prediction of EMS-induced mutations in a sorghum mutant population. Plant Direct. 6(5): e404. https://doi.org/10.1002/pld3.404

Ren, D., Engel, B. and Tuinstra, M.R., 2022. Crop improvement influences on water quantity and quality processes in an agricultural watershed. Water Research, p.118353. https://doi.org/10.1016/j.watres.2022.118353

Lin, M., Lynch, V., Ma, D., Maki, H., Jin, J., Tuinstra, M.R., 2022.  Multi-species prediction of physiological traits with hyperspectral modeling. Plants, 11, 676. https://doi.org/10.3390/plants11050676.

Gruss, S.M., Ghaste, M., Widhalm, J.R., Tuinstra, M.R., 2022. Seedling growth and fall armyworm feeding preference influenced by dhurrin production in sorghum. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-021-04017-4

Ojeda, J.J., Hammer, G., Yang, K.W., Tuinstra, M.R., DeVoil, P., McLean, G., Huber, I., Volenec, J.J., Brouder, S.M., Archontoulis, S. and Chapman, S.C., 2022. Quantifying the effects of varietal types× management on the spatial variability of sorghum biomass across US environments. GCB Bioenergy, 14(3), pp.411-433. https://doi.org/10.1111/gcbb.12919

Nazeri, B., Crawford, M. and Tuinstra, M.R., 2021. Estimating Leaf Area Index in Row Crops Using Wheel-Based and Airborne Discrete Return Lidar Data. Frontiers in Plant Science, p.2727. https://doi.org/10.3389/fpls.2021.740322

Herrero, M., Meline, V., Iyer-Pascuzzi, A.S., Souza, A.M., Tuinstra, M.R. and Yang, Y., 2021. 4D Structural root architecture modeling from digital twins by X-Ray Computed Tomography. Plant Methods 17, 123. https://doi.org/10.1186/s13007-021-00819-1

Ma, D., Rehman, T.U., Zhang, L., Maki, H., Tuinstra, M.R. and Jin, J., 2021. Modeling of Environmental Impacts on Aerial Hyperspectral Images for Corn Plant Phenotyping. Remote Sensing, 13, p.2520. https://doi.org/10.3390/rs13132520

Tolley, S.A., Singh, A. and Tuinstra, M., 2021. Heterotic Patterns of Temperate and Tropical Maize by Ear Photometry. Frontiers in Plant Science, 12, p.1117. https://doi.org/10.3389/fpls.2021.616975

Perumal, R., Morris, G.P., Jagadish, S.V.K., Little, C.R., Tesso, T.T., Bean, S.R., Yu, J., Prasad, V., and Tuinstra, M.R., 2021.  Registration of the Sorghum [Sorghum bicolor (L.) Moench] Nested Association Mapping (NAM) Population in RTx430 Background. Journal of Plant Registration. https://doi.org/10.1002/plr2.20110

Ma, D., Rehman, T.U., Zhang, L., Maki, H., Tuinstra, M.R. and Jin, J., 2021. Modeling of diurnal changing patterns in airborne crop remote sensing images. Remote Sensing, 13(9), p.1719. https://doi.org/10.3390/rs13091719

Herrero-Huerta, M., Meline, V., Iyer-Pascuzzi, A.S., Souza, A.M., Tuinstra, M.R. and Yang, Y., 2021. Root Phenotyping from X-Ray Computed Tomography: Skeleton Extraction. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, pp.417-422. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-417-2021

Manish, Raja, Ze An, Ayman Habib, Mitchell R. Tuinstra, and David J. Cappelleri. "AgBug: Agricultural Robotic Platform for In-Row and Under Canopy Crop Monitoring and Assessment." In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 85451, p. V08BT08A017. American Society of Mechanical Engineers, 2021.

Herrero-Huerta, M., Tolley, S., Tuinstra, M.R. and Yang, Y., 2021, April. Individual maize extraction from UAS imagery-based point clouds by 3D deep learning. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VI (Vol. 11747, p. 1174704). International Society for Optics and Photonics. https://doi.org/10.1117/12.2587100

Rogers, A.R., Dunne, J.C., Romay, C., Bohn, M., Buckler, E.S., Ciampitti, I.A., Edwards, J., Ertl, D., Flint-Garcia, S., Gore, M.A., Graham, C., Hirsch., C., Hood, E., Hooker, D., Knoll, J., Lee, E.C., Lorenz, A., Lynch, J.P., McKay, J., Moose, S.P., Murray, S.C., Nelson, R., Rocheford, T., Schnable, J.C., Schnable, P.S., Sekhon, R., Singh, N., Smith, M., Springer, N., Thelen, K., Thomison, P., Thompson, A., Tuinstra, M.R., Wallace, J., Wisser, R.J., Xu, W., Kaeppler, S., De Leon, N., and Holland, J.B., 2021.  The Importance of Dominance and Genotype-by-Environment Interactions on Grain Yield Variation in a Large-Scale Public Cooperative Maize Experiment. G3 Genes| Genomes| Genetics. https://doi.org/10.1093/g3journal/jkaa050

Yang, K.W., Chapman, S., Carpenter, N., Hammer, G., McLean, G., Zheng, B., Chen, Y., Delp, E., Masjedi, A., Crawford, M. Ebert, D., Habib, A., Thompson, A., Weil, C., Tuinstra, M.R., 2021. Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. in silico Plants, 3(1), p.diab001. https://doi.org/10.1093/insilicoplants/diab001

Zhang, X., Xie, J., Chen, T., Ma, D., Yao, T., Gu, F., Lim, J., Tuinstra, M.R., Hamaker, B.R., 2021.  High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not environment. Carbohydrate Polymers, 257: 117667. https://doi.org/10.1016/j.carbpol.2021.117667

Griebel, S., Adedayo, A. and Tuinstra, M.R., 2021. Genetic diversity for starch quality and alkali spreading value in sorghum. The Plant Genome, 14(1), p.e20067. https://doi.org/10.1002/tpg2.20067

Jarquin, D., de Leon, N., Romay, C., Bohn, M., Buckler, E.S., Ciampitti, I., Edwards, J., Ertl, D., Flint-Garcia, S., Gore, M.A., Graham, C., Hirsch, C.N., Holland, J.B., Hooker, D., Kaeppler, S.M., Knoll, K., Lee, E.C., Lawrence-Dill, C.J., Lynch, J.P., Moose, S.P., Murray, S.C., Nelson, R., Rocheford, T., Schnable, J.C., Schnable, P.S., Smith, M., Springer, N., Thomison, P., Tuinstra, M.R., Wisser, R.J., Xu, W., and Lorenz, A., 2020. Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield within the Genomes to Fields Maize Project. Frontiers in Genetics, 11, p.1819. https://doi.org/10.3389/fgene.2020.592769

Masjedi, A., Crawford, M.M., Carpenter, N.R. and Tuinstra, M.R., 2020. Multi-Temporal Predictive Modelling of Sorghum Biomass Using UAV-Based Hyperspectral and LiDAR Data. Remote Sensing, 12(21), p.3587. https://doi.org/10.3390/rs12213587

Cotrozzi, L., Peron, R., Tuinstra, M.R., Mickelbart, M.V. and Couture, J.J., 2020. Spectral phenotyping of physiological and anatomical leaf traits related with maize water status. Plant Physiology, 184(3), pp.1363-1377. https://doi.org/10.1104/pp.20.00577

McFarland, B.A., AlKhalifah, N., Bohn, M., Bubert, J., Buckler, E.S., Ciampitti, I., Edwards, J., Ertl, D., Gage, J.L., Falcon, C.M., Flint-Garcia, S., Gore, M.A., Graham, C., Hirsch, C.N., Holland, J.B., Hood, E., Hooker, D., Jarquin, D., Kaeppler, S.M., Knoll, J., Kruger, G., Lauter, N., Lee, E.C., Lima, D.C., Lorenz, A., Lynch, J.P., McKay, J., Miller, N.D., Moose, S.P., Murray, S.C., Nelson, R., Poudyal C., Rocheford T., Rodriguez, O., Romay, M.C., Schnable, J.C., Schnable, P.S., Scully, B., Sekhon, R., Silverstein, K., Singh, M., Smith, M., Spalding, E.P., Springer, N., Thelen, K., Thomison, P., Tuinstra, M.R., Wallace, J., Walls, R., Wills, D., Wisser, R.J., Wenwei, X., Yeh, C.-T., and de Leon, N., 2020. Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Research Notes, 13(1), pp.1-6.

Ramstein, G.P., Larsson, S.J., Cook, J.P., Edwards, J.W., Ersoz, E.S., Flint-Garcia, S., Gardner, C.A., Holland, J.B., Lorenz, A.J., McMullen, M.D., Millard, M.J., Rocheford, T.R., Tuinstra, M.R., Bradbury, P.J., Buckler, E.S. and Romay, M.C., 2020. Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize. Genetics, 215(1), p.215-230; https://doi.org/10.1534/genetics.120.303025.

Wang, L., Jin, J., Song, Z., Wang, J., Zhang, L., Rehman, T.U., Ma, D., Carpenter, N.R. and Tuinstra, M.R., 2020. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Computers and Electronics in Agriculture, 169, p.105209.

Falcon, C.M., Kaeppler, S.M., Spalding, E.P., Miller, N.D., AlKhalifah, N., Bohn, M., Buckler, E., Campbell, D., Ciampitti, I.A., Coffey, L., Edwards, J., Ertl, D., Flint-Garcia, S., Gore, M.A., Graham, C., Hirsch, C., Holland, J., Jarquin, D., Knoll, J., Lauter, N., Lawrence-Dill, C., Lee, E., Lorenz, A.J., Lynch, J., Murray, S.C., Nelson, R., Romay, C., Rocheford, T., Schnable, P., Scully, B.T., Smith, M., Springer, N., Tuinstra, M.R., Walton, R., Weldekidan, T., Wisser, R.J., Xu, W. and de Leon, N., 2020. Relative Utility of Agronomic, Phenological, and Morphological Traits for Assessing Genotype by Environment Interaction in Maize Inbreds. Crop Science 60: 62-81.

Wu, Y., Guo, T., Mu, Q., Wang, J., Li, X., Wu, Y., Tian, B., Wang, M.L., Bai, G., Perumal, R., Trick, H.N., Bean, S.R., Dweikat, I.M., Tuinstra, M.R., Morris, G., Tesso, T.T., Yu, J., Li, X., 2019. Allelochemicals targeted to balance competing selections in African agroecosystems. Nature Plants, pp.1-8.

Griebel, S., Westerman, R.P., Adeyanju, A., Addo-Quaye, C., Craig, B.A., Weil, C.F., Cunningham, S.M., Patel, B., Campanella, O.H. and Tuinstra, M.R., 2019. Mutations in sorghum SBEIIb and SSIIa affect alkali spreading value, starch composition, thermal properties and flour viscosity. Theoretical and Applied Genetics, 132(12), pp.3357-3374.

Ma, D., Carpenter, N., Amatya, S., Maki, H., Wang, L., Zhang, L., Neeno, S., Tuinstra, M.R. and Jin, J., 2019. Removal of greenhouse microclimate heterogeneity with conveyor system for indoor phenotyping. Computers and Electronics in Agriculture, 166, p.104979.

Ma., D., Carpenter, N., Rehman, T., Maki, H., Tuinstra, M.R. and Jin J., 2019. Greenhouse Environment Modeling and Simulation for Microclimate Control. Computers and Electronics in Agriculture, Computers and Electronics in Agriculture, 162, pp.134-142.

Griebel, S., Webb, M.M., Campanella, O.H., Craig, B.A., Weil, C.F. and Tuinstra, M.R., 2019. The alkali spreading phenotype in Sorghum bicolor and its relationship to starch gelatinization. Journal of cereal science, 86, pp.41-47.

Al Khalifah, N., Campbell, D.A., Falcon, C.M., Gardiner, J.M., Miller, N.D., Cinta Romay R, Walls, R., Walton, R., Yeh, C.T., Bohn, M., Bubert, J., Buckler, E.S., Ciampitti, I., Flint-Garcia, S., Gore, M.A., Graham, C., Hirsch, C., Holland, J.B., Hooker, D., Kaeppler, S., Knoll, J., Lauter, N., Lee, E.C., Lorenz, A., Lynch, N.P., Moose, S.P., Murray, S.C., Nelson, R., Rocheford, T., Rodriguez, O., Schnable, J.C., Scully, B., Smith, M., Springer, N., Thomison, P., Tuinstra, M.R., Wisser, R.J., Xu, W., Ertl, D., Schnable, P., De Leon, N., Spalding, E.P., Edwards, J., Lawrence-Dill, C.J. 2018. Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC research notes, 11(1), p.452.

Balzan, S., Carraro, N., Salleres, B., Dal Cortivo, C., Tuinstra, M.R., Johal, G. and Varotto, S., 2018. Genetic and phenotypic characterization of a novel brachytic2 allele of maize. Plant Growth Regulation, pp.1-12.

Addo-Quaye, C., Tuinstra, M., Carraro, N., Weil, C. and Dilkes, B.P., 2018. Whole genome sequence accuracy is improved by replication in a population of mutagenized sorghum. G3: Genes, Genomes, Genetics, pp.g3-300301.