Select Hall lab Publications
- Milholland KL, Gregor JB, Hoda S, Píriz-Antúnez S, Dueñas-Santero E, Vu BG, Patel KP, Moye-Rowley WS, Briggs SD and Hall MC (2023). Rapid, efficient auxin-inducible protein degradation in Candida pathogens. mSphere, in press, e00283-23. https://doi.org/10.1128/msphere.00283-23
- Milholland KL, AbdelKhalek A, Baker KM, Hoda S, DeMarco AG, Naughton NH, Koeberlein AN, Lorenz GR, Anandasothy K, Esperilla-Muñoz A, Correa-Bordes J, Narayanan S, Briggs SD, and Hall MC (2023). Cdc14 phosphatase contributes to cell wall integrity and pathogenesis in Candida albicans. Frontiers in Microbiology 14. https://doi.org/10.3389/fmicb.2023.1129155
- DeMarco AG and Hall MC (2023). Phosphoproteomic approaches for identifying phosphatase and kinase substrates. Molecules: Special issue “Functional Proteomics in Cell Biology and Beyond” 28: 3675. https://doi.org/10.3390/molecules28093675
- Gabel CA, Li Z, DeMarco AG, Zhang Z, Yang J, Hall MC, Barford D, and Chang L (2022). Molecular architecture of the augmin complex. Nature Comm 13, 5449. https://doi.org/10.1038/s41467-022-33227-7.
- DeMarco AG, Pascuzzi PE, Tao WA and Hall MC (2021). Phosphatase and kinase substrate specificity profiling with pooled synthetic peptides and mass spectrometry. Methods Mol Biol 2329: 51-70. https://doi.org/10.1007/978-1-0716-1538-6_5
- DeMarco AG, Milholland KL, Pendleton AL, Whitney JJ, Wesenberg DT, Nambiar M, Pepe A, Paula S, Chmielewski J, Wisecaver JH, Tao WA, and Hall MC (2020). Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: implications for antifungal development. Sci Rep 10: article 12073. https://doi.org/10.1038/s41598-020-68921-3
- Qin L, Mizrak A, Guimarães DSPSF, Tambrin HM, Morgan DO, and Hall MC (2019). The pseudosubstrate inhibitor Acm1 inhibits the anaphase-promoting complex/cyclosome by combining high-affinity activator binding with disruption of Doc1/Apc10 function. J Biol Chem, 294(46):17249-17261. https://doi.org/10.1074/jbc.RA119.009468
- Serratore ND, Baker KM, Macadlo LA, Gress AR, Powers BLG, Atallah N, Westerhouse KM, Hall MC, Weake VM, and Briggs SD (2018). A novel sterol-signaling pathway governs azole antifungal drug 5 resistance and hypoxic gene repression in S. cerevisiae. Genetics, 208(3):1037-55. https://doi.org/10.1534/genetics.117.300554.
- Powers BL, and Hall, MC (2017). Re-evaluating the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J Cell Sci. 130: 2673-2681. https://doi.org/10.1242/jcs.201012
- Qin L, Guimarães DSPSF, Melesse M, and Hall MC (2016). Substrate recognition by the Cdh1 destruction box receptor is a general requirement for APC/CCdh1-mediated proteolysis. J Biol Chem 291:15564-74. https://doi.org/10.1074/jbc.M116.731190
- Powers BL, Melesse M, Eissler CL, Charbonneau H, and Hall MC (2016). Measuring activity and specificity of protein phosphatases. Methods Mol Biol 1342: 221-35. https://doi.org/10.1007/978-1-4939-2957-3_13
- Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC*, Xu JR* (2015). FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 98(4):770-86. * – co-corresponding authors. https://doi.org/10.1111/mmi.13157
- Miller DP, Hall H, Chaparian R, Mara M, Mueller A, Hall MC, Shannon KB (2015). Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol Biol Cell 26(16):2913-26. https://doi.org/10.1091/mbc.E14-12-1637
- Aryal U, McBride Z, Li J, Xiong X, Y, Kihara D, Xie J, Hall MC, and Szymanski DB (2014). A proteomic strategy for global analysis of plant protein complexes. The Plant Cell 26(10): 3867-3882. https://doi.org/10.1105/tpc.114.127563
- Melesse M, Choi E, Hall H, Walsh MJ, Geer MA, and Hall MC (2014). Timely activation of budding yeast APCCdh1 involves degradation of its inhibitor, Acm1, by an unconventional proteolytic mechanism. PLoS ONE 9(7): e103517. https://doi.org/10.1371/journal.pone.0103517
- Eissler CL, Mazón G, Powers BL, Savinov SB, Symington LL, and Hall MC (2014). The Cdk/Cdc14 module controls activation of the Yen1 Holliday junction resolvase to promote genome stability. Mol Cell 54: 80-93. https://doi.org/10.1016/j.molcel.2014.02.012
- Martinez JS, Hall H, Bartolowits MD, and Hall MC (2012). Acm1 contributes to nuclear positioning by inhibiting Cdh1-substrate interactions. Cell Cycle, 11(2): 384-394. https://doi.org/10.4161/cc.11.2.18944
- Bremmer SC, Hall H, Martinez JS, Eissler CL, Hinrichsen T, Rossie S, Parker LL, Hall MC*, and Charbonneau H* (2012). Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem. 287(3): 1662-1669. * – co-corresponding authors. https://doi.org/10.1074/jbc.M111.281105
- Chin CF, Bennett AM, Ma WK, Hall MC, and Yeong FM (2012). Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 23(1): 45-58. https://doi.org/10.1091/mbc.e11-05-0434
- Eissler CL, Bremmer SC, Martinez JS, Parker LL, Charbonneau H, and Hall MC (2011). A general strategy for studying multi-site protein phosphorylation using label-free selected reaction monitoring mass spectrometry. Biochem. 418: 267-275. https://doi.org/10.1016/j.ab.2011.07.015
- Balasubramaniam D, Eissler CL, Stauffacher CV, and Hall MC (2010). Use of selected reaction monitoring data for label-free quantification of protein modification stoichiometry. Proteomics 10: 4301-4305. https://doi.org/10.1002/pmic.201000232
- Choi E, Dial JM, Jeong D, and Hall MC (2008). Unique D-box and KEN-box sequences limit ubiquitination of Acm1 and promote pseudosubstrate inhibition of the anaphase-promoting complex. J Biol Chem. 283(35): 23701-23710. https://doi.org/10.1074/jbc.M803695200
- Martinez JS, Jeong D, Choi E, Billings BM, and Hall MC (2006). Acm1 is a negative regulator of the Cdh1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol Cell Biol. 26(24): 9162-9176. https://doi.org/10.1128/MCB.00603-06