Skip to Main Content

Study suggests new targets for improving soybean oil content

Scientists working to increase soybean oil content tend to focus their efforts on genes known to impact the plant’s seeds, but a Purdue University study shows that genes affecting other plant parts deserve more attention.

Wild-type soybeans contain bloom, a powdery substance originating in the pod that can coat seeds. This trait makes the seeds less visible and is believed to be advantageous for their long-term survival in natural environments. But the bloom is enriched with allergens and can be harmful for animals and people if ingested. People domesticating soybeans selected a naturally occurring mutation that makes soybean seeds shiny through eliminating bloom.

“This mutation was selected by ancient farmers approximately 5,000 years ago,” said Jianxin Ma, professor in Purdue’s Department of Agronomy. “That could have been a key step for domesticating soybean for agricultural production and human consumption.”

Ma and his colleagues wanted to know more about the genetic control of bloom in wild soybeans. They found that a single nucleotide polymorphism - a change from a single cytosine (C) to a thymine (T) within a gene called B1 eliminates bloom from wild soybeans.

Surprisingly, that’s not all the mutation did for soybeans.

“We found that the mutation within the B1 gene resulted in substantial increases of seed oil content in cultivated soybeans compared with the wild type,” said Ma, whose findings were published in the journal Nature Plants. “It seems like the selection of this mutation by farmers was essential for making soybean an important oilseed crop that we have now.”

The B1 gene does not seem to affect oil biosynthesis within seeds. However, the mutation that leads to loss of bloom heightens the activity of master regulators of oil biosynthesis in the endocarp of pods that appears to result in enhanced oil accumulation in seeds.

The findings show that there may be genetic targets outside those responsible for seed traits that could affect soybean seed oil content.

Ma will continue studying the genetic control of seed oil content mediated by the B1 gene, in particular the ways in which it interacts with other genes in a network to affect the pod and seed traits.

Funding for this work came from the North Central Soybean Research Program, the Indiana Soybean Alliance, the Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture, the Republic of Korea Rural Development Administration (RDA) Research Program, Qingdao Agricultural University, and the Purdue University AgSEED Program.

Jianxin Ma, Purdue University professor of agronomy, has found that a gene affecting bloom in soybeans also increases the crop’s seed oil content. (Purdue Agricultural Communication photo/Tom Campbell) Jianxin Ma, Purdue University professor of agronomy, has found that a gene affecting bloom in soybeans also increases the crop’s seed oil content. (Purdue Agricultural Communication photo/Tom Campbell)

Featured Stories

a girl smiling
Undergraduate Student Spotlight: Sophia Bollenbacher

Sophia Bollenbacher, a junior studying animal sciences, grew up on Bolle-Acres Jersey Farm in...

Read More
A resilient agricultural systems infographic depicting limited disturbance of soils, inclusion of cover crops and preservation of biodiversity.
Purdue University to host inaugural Resilient Agriculture Summit

Whether it’s called sustainable, regenerative or resilient agriculture, farmers across...

Read More
Purdue Digital Forestry Students
Purdue digital forestry students win first prize in 2024 Annual GeoChallenge

A team of digital forestry graduate students from Purdue University won first prize in the...

Read More
Woman shopping at grocery store
Consumer stress over grocery prices stands at midpoint

Stress levels due to grocery prices are mixed, and most consumers are at least somewhat familiar...

Read More
Sujith Puthiyaveetil and Steve McKenzie look at a plant thylakoid in a lab at the biochemistry building at Purdue University. (Purdue Agricultural Communications/Joshua Clark)
Purdue biochemists discover self-repair function in key photosynthetic protein complex

Cyanobacteria began contributing oxygen to Earth’s mostly noxious atmosphere more than 2...

Read More
Sujoung Shim in lab
Behind the Research: Sujoung Shim

Many people are involved in the remarkable range of programs, services and facilities that...

Read More
To Top