Skip to Main Content

Discovery of new type of stem cells leads to $2.3 million grant

When muscle is damaged, resident stem cells mediate the repair of the injured tissue. At the same time, circulating immune cells race to the site to aid the repair. The presence of these infiltrating immune cells at injury sites raises questions about their role in coordinating with muscle stem cells to build or regenerate muscle tissue.

Shihuan Kuang, a Purdue professor of animal sciences, has identified a previously unknown subset of muscle stem cells, which he has dubbed “immunomyoblasts,” that have both muscle stem cell and immune cell properties and may shed light on how those cells interact. The National Institutes of Health’s National Institute of Arthritis and Musculoskeletal and Skin Diseases recently awarded Kuang $2.3 million over five years to develop a basic understanding of these cells’ origins and functions.

Shihuan Kuang Shihuan Kuang

“These stem cells have unique properties that raise questions about where they come from and how they relate to muscle and immune cells,” Kuang said. “This grant will provide the support for us to answer those fundamental questions and lay a foundation for applied research into ways immunomyoblasts could be targeted to treat diseases and improve animal agriculture.”

Kuang’s lab identified the new subcategory of stem cells through a technique called single-cell RNA sequencing. It allows scientists to profile all of the genes expressed in one cell by decoding the single-strand RNAs that were produced in the cell. His team did that with over 50,000 cells to recognize unique properties in the cells and determine that immunomyoblasts are a subset of cells that express both muscle and immune genes.

Kuang will use a strategy called cell lineage (or fate) mapping to understand where immunomyoblasts originate — whether they are a form of existing muscle stem cells that can communicate with infiltrating immune cells. The process entails tracking differentiated cells backward to their origins.

From there, Kuang will determine the types of immune cells — T-cells, B-cells, microphages or others — that the immunomyoblasts are communicating with and how that coordination plays a role in muscle development and repair.

The knowledge gained from Kuang’s work may open new avenues of research in muscular diseases. Understanding how to improve muscle regeneration could lead to therapies that can combat diseases like muscular dystrophy.

It may also be possible to learn more about how muscles develop in pigs, cattle and other animals raised for meat and make improvements in those processes.

Kuang’s collaborators in the study include Stephanie Oprescu, an NIH-supported graduate student; Feng Yue, a research scientist in animal sciences; Luis Brito, an assistant professor of animal sciences; Matthew Olson, an assistant professor of biological sciences; and Timothy Ratliff, a professor of comparative pathobiology.

Featured Stories

Dog outdoors drinking water
Keeping your pets safe during the dog days of summer

As temperatures and humidity rise across the U.S., Candace Croney, director of the Center for...

Read More
Sonling Fei in front of digital trees
Digital forestry can help mitigate and prevent wildfires

The National Interagency Fire Center reports that, as of this writing, 19,444 fires have burned...

Read More
Researcher uses pipette on parsley plant
Researchers examine nanotechnological methods for improving agriculture

Nanoscale particles could potentially help address agricultural and environmental sustainability...

Read More
Diane Wang gathers plant data with a student.
Fields of Discovery: High school students join Purdue professors in research

High school students join Purdue professors to learn about research opportunities in agriculture...

Read More
a tractor spreads gypsum across a field and a soil probe has a sample of six inches of a dark brown soil in the metal tube
How Purdue researchers and the USDA are finding ways to bury carbon beneath our feet

Soils are a rare win-win when it comes to burying the carbon released from burning fossil fuels....

Read More
Wilford tends to Gracie the cow.
Fields of Discovery: From track to trough— leaping into research

This summer, Rieko Wilford is making big leaps researching methane emissions; on the track,...

Read More
To Top