Skip to Main Content

Research reveals different aspects of DNA demethylation involved in tomato ripening process

Using advanced gene-editing technology, a team of scientists found that DNA demethylation is required for the tomato ripening process through both activation of induced genes and the inhibition of ripening-repressed genes. 

zhu-j171.jpg
Jian-Kang Zhu, a professor of horticulture and landscape architecture at Purdue University, led research that could lead to a better understanding of how DNA methylation is involved in fruit ripening. (Purdue Agricultural Communication photo/Tom Campbell)

Most studies on DNA demethylation have focused on it solely as a gene activation mechanism, saidJian-Kang Zhu, the lead researcher and distinguished professor ofhorticulture and landscape architectureat Purdue University. 

“The findings of this study were very surprising because most studies have pointed to how demethylation functions to activate a gene,” he said. “This study found many genes that were activated by methylation or silenced by demethylation, contrary to the well-known function of demethylation.”

The research findings, which were published in the Proceedings of the National Academy of Sciences, could lead to a better understanding of how DNA methylation is involved in fruit ripening, said Zhaobo Lang, principal investigator at Shanghai Center for Plant Stress Biology and a doctoral graduate of Purdue University. 

“It is the foundation for potential modification of crops to created more diversities at the epigenetic level,” said Lang, who earned her doctoral degree in Purdue University’s College of Agriculture. 

During the research, the team generated a mutant of tomato DNA demethylase using CRISPR gene-editing technology, Lang said. As a result, the team reached the findings of how DNA demethylation is required for tomato fruit ripening through both activation of induced genes and inhibition of ripening-repressed genes.

A team of scientists led by Purdue University professor Jian-Kang Zhu found that DNA demethylation is required for the tomato ripening process, through both activation of induced genes and the inhibition of ripening-repressed genes. (Purdue Agricultural Communication photo/Tom Campbell) A team of scientists led by Purdue University professor Jian-Kang Zhu found that DNA demethylation is required for the tomato ripening process, through both activation of induced genes and the inhibition of ripening-repressed genes. (Purdue Agricultural Communication photo/Tom Campbell)

“Labs working on DNA methylation and demethylation have been using Arabidopsis as model system for many years,” Lang said. “However, Arabidopsis doesn't have some agronomically important processes, such as fiber growth in cotton and ripening of fleshy fruit.” 

Scientists throughout the world have been studying DNA methylation for the past several decades. Research has intensified as discoveries were made about its critical role in cellular processes in plants and mammals. 

While the team’s research focused on tomatoes and methods for addressing ripening challenges, Zhu said the findings could improve production for other fruits. 

“We started with tomatoes, but we are also interested in other fruits, including grapes, pears, apples and strawberries,” Zhu said. “We’re interested in finding other ways to manipulate the ripening process in other fruits. In a basic sense, we now have deeper insights on how the ripening of food is controlled by epigenetic marks.”

Featured Stories

Julia Peterson in the mesas of Arizona.
Finding beauty in the mess—the perspective of a botany and art double major

A low, whirring hum fills your ears as you step into the building. As your eyes adjust to the...

Read More
Ismail Olaniyi flies a UAV up above the trees.
The crossroads between lemon trees and technology

In warmer southern and western states, citrus orchards are important for feeding and bringing...

Read More
Piglets
Combined microbiome datasets yield accurate prediction of animal ages

An analysis combining the results of 14 studies from around the globe has uncovered some common...

Read More
A hand holding two eggs
Rehabilitation through agricultural skills with Purdue Farmer-to-Farmer Trinidad and Tobago

Gardening and poultry care are sometimes seen as trendy hobbies in the U.S., but in Trinidad and...

Read More
Claire King waters her quinoa in the greenhouse.
Claire King named a Golden Opportunity Scholar

It’s easy to imagine the whole of agriculture as a giant feast sprawled out on an equally...

Read More
Logos for the American Fisheries Society, Society of American Forestry and The Wildlife Society conventions/conferences
FNR Research Was Well-Represented at Fall Organizational Conferences

Purdue Forestry and Natural Resources and the cutting-edge research being performed by its...

Read More
To Top