Skip to Main Content

Research reveals different aspects of DNA demethylation involved in tomato ripening process

Using advanced gene-editing technology, a team of scientists found that DNA demethylation is required for the tomato ripening process through both activation of induced genes and the inhibition of ripening-repressed genes. 

zhu-j171.jpg
Jian-Kang Zhu, a professor of horticulture and landscape architecture at Purdue University, led research that could lead to a better understanding of how DNA methylation is involved in fruit ripening. (Purdue Agricultural Communication photo/Tom Campbell)

Most studies on DNA demethylation have focused on it solely as a gene activation mechanism, saidJian-Kang Zhu, the lead researcher and distinguished professor ofhorticulture and landscape architectureat Purdue University. 

“The findings of this study were very surprising because most studies have pointed to how demethylation functions to activate a gene,” he said. “This study found many genes that were activated by methylation or silenced by demethylation, contrary to the well-known function of demethylation.”

The research findings, which were published in the Proceedings of the National Academy of Sciences, could lead to a better understanding of how DNA methylation is involved in fruit ripening, said Zhaobo Lang, principal investigator at Shanghai Center for Plant Stress Biology and a doctoral graduate of Purdue University. 

“It is the foundation for potential modification of crops to created more diversities at the epigenetic level,” said Lang, who earned her doctoral degree in Purdue University’s College of Agriculture. 

During the research, the team generated a mutant of tomato DNA demethylase using CRISPR gene-editing technology, Lang said. As a result, the team reached the findings of how DNA demethylation is required for tomato fruit ripening through both activation of induced genes and inhibition of ripening-repressed genes.

A team of scientists led by Purdue University professor Jian-Kang Zhu found that DNA demethylation is required for the tomato ripening process, through both activation of induced genes and the inhibition of ripening-repressed genes. (Purdue Agricultural Communication photo/Tom Campbell) A team of scientists led by Purdue University professor Jian-Kang Zhu found that DNA demethylation is required for the tomato ripening process, through both activation of induced genes and the inhibition of ripening-repressed genes. (Purdue Agricultural Communication photo/Tom Campbell)

“Labs working on DNA methylation and demethylation have been using Arabidopsis as model system for many years,” Lang said. “However, Arabidopsis doesn't have some agronomically important processes, such as fiber growth in cotton and ripening of fleshy fruit.” 

Scientists throughout the world have been studying DNA methylation for the past several decades. Research has intensified as discoveries were made about its critical role in cellular processes in plants and mammals. 

While the team’s research focused on tomatoes and methods for addressing ripening challenges, Zhu said the findings could improve production for other fruits. 

“We started with tomatoes, but we are also interested in other fruits, including grapes, pears, apples and strawberries,” Zhu said. “We’re interested in finding other ways to manipulate the ripening process in other fruits. In a basic sense, we now have deeper insights on how the ripening of food is controlled by epigenetic marks.”

Featured Stories

Anna Paltseva, clinical assistant professor of urban science in the agronomy department, sits outside of a greenhouse, holding her Urban Soils Guide.
Framework to expand engagement in urban areas

Urban soils are essential to building sustainable cities — from supporting green...

Read More
Ag Barometer
Farmer sentiment improves as long-term optimism outweighs tariff concerns

Farmer sentiment improved in April as producers expressed more optimism about current and future...

Read More
black soldier fly
Revolutionizing waste: How black soldier flies transform food waste into sustainable solutions

With food waste being a growing problem around the world, finding innovative solutions is more...

Read More
Two women examine the ground near tomato plants
Small Farm Education Field Day will feature new research, demonstrations and Purdue experts

The Purdue Small Farm Education Field Day on July 24 will offer demonstrations and presentations...

Read More
Oseremi Olivia Jagbojo
Oseremi Olivia Jagbojo - Graduate Ag Research Spotlight

Growing up in bustling Lagos, Nigeria, the largest city in Africa, agriculture was the furthest...

Read More
Luiz Brito smiling with a mural of cows in the background.
Luiz Brito named 2025 University Faculty Scholar

Luiz Brito, associate professor of animal sciences, has been named a 2025 University Faculty...

Read More
To Top