Skip to Main Content

Study highlights nitrogen efficiency gains in corn hybrids over 70 years

During the past 70 years, hybrid corn varieties have increased both yield and nitrogen use efficiency at nearly the same pace, largely by preserving leaf function during grain filling. The Purdue University study’s findings offer strategies for corn breeders who want to continue to improve yields and nutrient efficiencies.

Decades of genetic improvements in corn have led to a fourfold increase in grain yield since the 1930s, before hybrids were widely used. But those yields also required increases in nitrogen application, and loss of excess nitrogen can damage water and air quality as well as wildlife.

Tony Vyn, the Corteva Agriscience Henry A. Wallace Chair in Crop Sciences and a professor in Purdue’s Department of Agronomy​, wanted to know how corn plants have historically utilized nitrogen – especially in reproductive growth – so that breeders can make informed decisions with future hybrids. He and his former doctoral student, Sarah Mueller, obtained seed and grew seven commercially important Pioneer hybrids, approximately one from each decade between 1946 and 2015. They were grown side by side under a range of nitrogen managements and analyzed at several stages of growth through maturity to understand nitrogen uptake and distribution throughout plant tissues.

An early corn hybrid from 1958 (right) versus a more modern hybrid from 2015 (left). The modern crops retain leaf nitrogen longer, keeping leaves green for continued photosynthesis that allows plants to increase kernel number and size. An early corn hybrid from 1958 (right) versus a more modern hybrid from 2015 (left). The modern crops retain leaf nitrogen longer, keeping leaves green for continued photosynthesis that allows plants to increase kernel number and size.

“There’s been a progressive improvement in nitrogen use efficiency in corn hybrids. That’s coming about as yields have increased while modern hybrids were able to capture more and more of the fertilizer nitrogen applied,” said Vyn, whose findings were published in the journal Scientific Reports.

Over the last 70 years, genetic improvements have led to an 89 percent increase in grain yields and a 73 percent increase in nitrogen use efficiency from early hybrids to today, the study finds.

 “There’s been a plateau in nitrogen fertilizer rates applied to corn in the U.S. since the 1980s,” Vyn said. “But we’re capturing more of the fertilizer we apply so that less is lost while more of the nitrogen captured by the plant is creating grain. In our case, we’ve documented progression from creating 42 pounds of grain per pound of nitrogen taken up in the plant to 65 pounds of grain.

“That essentially means that we’ve not necessarily sacrificed the environment in realizing much higher yields now than we did 50 or 70 years ago.”

Vyn’s team found that more modern hybrid corn kernels get much of their nitrogen from corn stems. That’s key, he said, because it’s important to keep as much nitrogen as possible in leaves so that plants can meet the assimilate requirements inherent in the increased corn kernel numbers and kernel size that are foundational in achieving higher grain yields.

“Kernels are going to pull nitrogen from somewhere in the plant. Stems contribute almost nothing to photosynthesis, but keeping nitrogen concentrations in the leaves higher for more of the growing season allows for more photosynthesis and improved yields,” Vyn said.

He added that the findings offer breeders suggestions for how to continue to make improvements in yield and nitrogen use efficiency, focusing on the timing and movement of nitrogen through stems and into kernels.

Corteva Agriscience, of which Pioneer Hybrid International is a part, donated seeds for the research, blindly analyzed tissue samples and provided funding to hire undergraduate student workers and for field and laboratory supply and equipment rental expenses. Sarah Mueller’s doctoral studies at Purdue were supported by a scholarship from the Indiana Corn Marketing Council. Vyn was funded through a U.S. Department of Agriculture Hatch grant. 

Featured Stories

Male researcher water collecting data from water tank
Working together to mitigate forever: Managing persistent PFAS in our environment

When Linda Lee received a sample of shellfish from an Alaskan reservation in 2005, she was...

Read More
Gateway Arch at Purdue University
Purdue, Kearney announce partnership to enhance agribusiness education and innovation

Kearney’s agriculture and food team and Purdue University’s Center for Food and...

Read More
a girl looking into a microscope
Junior Pork Day educates 4-H’ers and parents on swine industry

Junior Pork Day offers hands-on learning for 4-H’ers and parents on swine industry skills...

Read More
Cattle in a field
DIAL Ventures Agrifood Economy Index posts 8-point increase since August

The overall Agrifood Economy Index rose to 94 in December, recovering from August’s low of...

Read More
Ag-Lead-Pro-Mobile
Purdue Agriculture launches new leadership certificate for students

The College of Agriculture has introduced a new undergraduate leadership certificate program,...

Read More
a female smiling
Graduate Student Spotlight: Harliqueen Jacinto

Harliqueen Jacinto studies animal welfare at Purdue, transitioning from fisheries to expand her...

Read More
To Top