New technology for protein complex discovery holds promise for biotechnology and crop improvement

Living cells survive and adapt by forming stable protein complexes that allow them to modulate protein activity, do mechanical work and convert signals into predictable responses, but identifying the proteins in those complexes is technically challenging. Purdue University researchers have developed a method to predict the composition of thousands of proteins complexes at one time, a discovery that will speed discoveries about cell functions.

The method predicts the composition of naturally occurring protein complexes that are extracted from living cells. It is significantly faster and cheaper than traditional methods that use large-scale cloning, affinity labels or antibodies to identify protein complex components. The method has the potential to help scientists understand how thousands of protein complexes function together to enable plant cells to grow normally and respond to changing environments.

Daniel Szymanski, a professor in Purdue’s Department of Botany and Plant Pathology, and graduate students Zach McBride and Youngwoo Lee, separated thousands of proteins based on size and charge and used mass spectrometry to predict which proteins were likely to bind to one another and form a stable protein complex. In this guilt-by-association approach, proteins that form a stable complex should co-purify with each other using any separation strategy.

Szymanski’s team also validated the process. The team confirmed the presence of many known and novel protein complexes that were predicted from the profiling method.

“From one of these separations, we get elution profiles for thousands of proteins,” said Szymanski, whose findings were published in the journal Molecular and Cellular Proteomics. “We can combine all of the protein profile data from the columns, identify the elution profiles that are most similar to each other, and predict which proteins are physically associated with one another.”

Once protein complexes are identified, scientists can determine their function in cells, how cellular pathways are regulated, how those proteins affect cell signaling, and more. Szymanski said the method works in any organism that has a sequenced genome, including corn, soybeans, rice, and cotton.

“This method has been used to globally analyze protein complexes in plants of differing genotypes or those grown under different conditions. It’s like a new phenotyping tool to analyze systems-level changes in protein abundance, binding partners, and subcellular localization,” Szymanski said.

The method serves as a large-scale hypothesis-generating machine that will accelerate understanding of the complicated workings of plant cells and give researchers broad knowledge about how plants adapt to heat, water, and other stresses.

The research was supported by the National Science Foundation Plant Genome Research Program. 

Purdue University’s Daniel Szymanski developed a mass spectrometry method to identify the composition of protein complexes. Proteins that co-purify are predicted interactors. The profile data are generated from extracts isolated from developing Arabidopsis leaves. (Purdue Agricultural Communication photo) Purdue University’s Daniel Szymanski developed a mass spectrometry method to identify the composition of protein complexes. Proteins that co-purify are predicted interactors. The profile data are generated from extracts isolated from developing Arabidopsis leaves. (Purdue Agricultural Communication photo)

Featured Stories

Abigail Bothwell holds Purdue flag on study ab
A world of opportunity in Agricultural Economics

Growing up traveling the world, Abigail Bothwell always wanted to see how agriculture connects...

Read More
Corn and wheat crops in a field with a blue sky in the background.
Purdue agronomy faculty members earn 2025 ACSESS Fellows

The Alliance of Crop, Soil and Environmental Science Societies (ACSESS) have acknowledged three...

Read More
Ag Barometer
Farmer sentiment drops sharply at start of 2026 as economic concerns increase

Farmer sentiment weakened sharply in January, as the Purdue University/CME Group Ag Economy...

Read More
Panel discussion of geographic information systems experts.
Digital foresters embrace GIS mapping and analysis

Purdue University has grown a thriving forest of more than 2,000 geographic information systems...

Read More
Kendall Cottingham
Kendall Cottingham - Graduate Ag Research Spotlight

Growing up in Bloomington, Kendall Cottingham was certain that she liked science and was a people...

Read More
Purdue College of Agriculture.
Chia Seeds Recalled Due to Possible Salmonella Contamination

On January 23, 2026, Navitas Organics announced a recall of selecting lots of 8 oz Organic Chia...

Read More