Skip to Main Content

How a diagnostic tool used on cows might unlock a key to COVID-19 testing

What do cows and COVID-19 have in common?  Unless you’re Mohit Verma, assistant professor in Purdue University’s Department of Agricultural and Biological Engineering, the answer is probably not much.

Verma’s research focuses on developing biosensors to monitor infectious diseases in bovines. Specifically, he studies how to diagnose Bovine Respiratory Disease (BRD), the most common bovine disease in beef cattle in the world. Detection of the disease can be difficult and costly. Verma’s lab develops methods for testing that are accurate, safe and less expensive for farmers and veterinarians.

“The technique we use is based on the identification of nucleic acids specific to that virus,” Verma said. “The test will show us what pathogen is causing the infection. This helps determine which antibiotic to prescribe.” The tests are small sensors, cheap and easy to produce that provide test results in a matter of minutes.

“That’s exactly what is needed right now for COVID-19 testing,” Verma said. “So, back in February, we began looking at ways to adapt the biosensor used for BRD to a cheap, reliable test for COVID-19 and other SARS diseases.”

The tests have performed well in the lab setting, and Verma said he is working with external partners (Raytheon BBN, PortaScience, Laduca RCA) to fast-track the approval of the device when the time is appropriate. Several challenges remain.

dsc00096-scaled.jpg
Mohit verma demonstrates bio sensor technology.

The main hurdle: logistics.

The project is being accelerated, attempting to accomplish a goal in months that would typically take years. There are technical challenges in the lab. And Verma faces challenges with purchasing, personnel, and facilities.  He is working with administrative leaders to overcome these challenges and minimize delays. His target is for the device to be submitted to the FDA for emergency use within three months.

Verma knows many other researchers are working on COVID-19 testing devices around the world, and even some at Purdue. That’s an entirely positive thing, he explains. A likely and ideal scenario, he continued, is that many of these tests are approved for usage and flood the market, addressing the severe shortage of diagnostic equipment currently stymieing efforts to eradicate COVID-19 globally.

Long-term, Verma hopes this same kind of technology can be used for other kinds of viruses, including influenza. Ideally, one device could detect multiple targets, which would improve diagnostic accuracy, cut down on healthcare cost and save time for healthcare professionals.

“This is a great example of how the technology developed in agriculture can have implications far beyond that sphere,” Verma said.

Featured Stories

Fresh cuts of beef line the racks at the Boilermaker Butcher Block.
Beefing over prices: How brisket went from the cheapest to most coveted cut

A king among barbecue platters, the brisket is a finicky cut of meat packed with fat and tissue....

Read More
Food scientist examines mouse tissue through a microscope that is displayed on a computer monitor
Laboratory fishing expedition reels in a big catch: hidden pathogenic role of a housekeeping enzyme in Listeria

Purdue University doctoral student Dongqi Liu has identified a previously unknown strategy that...

Read More
Corn field with lots of rain
Purdue-led USDA project aims to double impact of climate-smart Corn Belt agriculture

Purdue University is leading a $1.5 million partnership with the U.S. Department of...

Read More
Several rows of corn grow in a field.
Indiana Commission on Hispanic/Latino Affairs honors Purdue’s Nicoletti-Martinez’s outreach and assistance to migrant farm workers

For a career dedicated to assisting migrant farmworkers and their families for over 20 years,...

Read More
Joshua Widhalm
A track record of scholarly excellence: Widhalm named 2023 University Faculty Scholar

“If you ask my mother, I declared in third grade that I was going to be a professor one...

Read More
W. Andy Tao, professor of biochemistry at Purdue, led a team with Anton Iliuk of Purdue spinoff Tymora Analytical Operations to apply the company’s EVtrap technology to early testing for neurodegenerative diseases and cancer
New liquid biopsy method offers potential for noninvasive Parkinson’s disease testing

A team led by researchers at Purdue University and Purdue spinoff company Tymora Analytical...

Read More
To Top