Forest Responses to Human Disturbance and Invasives

Forest responses to human-mediated disturbance, invasive species, and restoration prescriptions

Forest image, project Forest Responses to Human-Mediated Disturbance, invasive Species and Restoration Prescriptions.Human populations continue to have a profound impact on native ecosystems and this research program will continue to address these impacts. This program will examine how direct and indirect human activities affect forest ecosystems, and test potential techniques to aid in their restoration. I will focus on how anthropogenic changes at the landscape scale have affected the diversity and sustainability of hardwood forests. In addition, I will test techniques to restore native tree species and control non-native shrub species.

In forests and other biomes, invasive species have eliminated or excluded native species, altered soil conditions, homogenized species composition, reduced biological diversity, and suppressed forest regeneration. Invasive insects and disease can function as a disturbance agent by eliminating important trees species from across a region in a matter of decades. These losses reduce biodiversity, alter trophic relationships, and degrade wildlife habitat. In addition, the loss of overstory trees changes the microenvironment of forest understories, leading to shifts in species composition and community structure. Invasive plants often displace native species, and the loss of these species have likely caused cascading effects on wildlife populations, nutrient cycling, and embedded aquatic systems. Further, invasive plants alter the productivity and sustainability of forest ecosystems, which directly impacts the economic viability of forest land. Economic effects are particularly problematic in the Midwest, where forests constitute a relatively small component of total land cover but produce high value premier hardwood veneer and lumber. Therefore, control of non-native plants within is critical to both the ecological and economic integrity of forests.

Alterations to native disturbance regimes have also led to ecological change and degradation. For example, fire suppression across much of eastern North America has led to the loss of fire- dependent forest types and the homogenization of species composition. In particular, fire suppression has led to a well-documented and wide scale reduction in oak species importance across much of the eastern United States. This genus is economically important and critical to the trophic structure of forests because of the production of hard mast. Consequently, members of this genus are viewed as foundation species in the eastern forest. To reverse these undesired changes, land management agencies have sought to restore native fire regimes. However, a serious lack of knowledge about how fire functions in these forests has stymied managers and highlights the need for additional research. As oak forests in the eastern United States age and individual oak trees edge closer to natural mortality, this avenue of research becomes increasing critical to preserving these ecologically and economically valuable forests.

Similarly, chronic browsing by overabundant deer populations has led to the loss of sensitive species, the homogenization of understory communities, and the failure of forest regeneration. The contemporary landscape of the eastern United States has created conditions that favor the continued overabundance of deer. However, deer population abundance, and the effects of these populations, vary with landscape context. Understanding these relationships is critical to the successful management of deer populations at a state-wide scale.

Project Director: Dr. Michael Jenkins
10/01/2018 - 09/30/2023

Learn More About Us

Purdue Digital Forestry Students
Purdue digital forestry students win first prize in 2024 Annual GeoChallenge

A team of digital forestry graduate students from Purdue University won first prize in the...

Read More
Purdue TWS president Celia Parton and master's student Emma Johnson accept the plaque for North Central Region Student Chapter of the Year at the Midwest Fish and Wildlife Conference.
Student Chapter of the Wildlife Society Named North Central Region Chapter of the Year

The Purdue student chapter of The Wildlife Society was named as the North Central Region’s...

Read More
A photo of a wildfire provided by Blake Stanton.
FNR Alumni Assist During Wildlfire Season

Wildfire season can extend from five to more than seven months in length, occurring mostly in the...

Read More
Walt Beineke stands next to one of the space sycamores he planted on his property.
FNR Remembers Professor Emeritus Walt Beineke

Dr. Walt Beineke, a 1960 forestry alumnus and a faculty member for more than 30 years, passed...

Read More
Mary Beth Adams stands in front of a sign publicizing her visit to Nanjing Normal University in China.
Distinguished Alumna Adams Travels to China for Scientific Exchange Opportunity

Dr. Mary Beth Adams, a 2016 Purdue Distinguished Agricultural Alumni Award honoree and 2020...

Read More
Ashley Higdon and Dr. Barny Dunning birding; a white oak grove; a white-tailed deer
FNR's Most Read Stories of 2024

2024 was a productive year for Purdue Forestry and Natural Resources across the three land grant...

Read More