Improve Bioenergy Populus Crops

Modification of the Lignin biosynthetic pathway in populus to improve its utility as a bioenergy crop

Modification of the Lignin Biosynthetic Pathway in Populus to Improve its Utility as a Bioenergy Crop Mc-Intire Stennis Project, photo of tree leaves.Concerns about energy security and the environment have prompted policymakers in the U.S. to explore options for substituting petroleum-based fuels with renewable, sustainable biofuels. The primary liquid biofuel used globally is ethanol. In 2017, 15.8 billion gallons of fuel ethanol were produced in the U.S., a vast majority of which was derived from corn (Renewable Fuels Association, 2018). When a significant portion of the corn crop is diverted away from its primary use (food and feed), the cost of a wide variety of commodities is affected. To meet the growing demand for renewable fuels, while minimizing disruptive economic effects, alternative feedstocks will be needed. Poplars (species within the genus Populus) offer several advantages over other dedicated bioenergy crops, including its ability to flourish on marginal lands (see below). A major impediment for the use of poplar wood or any other cellulosic feedstock is the recalcitrance of lignin. The proposed research will help enable us to assess the benefits that could accrue from using lignin-modified poplar as a feedstock for producing biofuels. Our results with poplar can be used as a guide for other researchers who are attempting to improve the conversion efficiency of other cellulosic feedstocks.

In addition to being a versatile model system, poplars also have commercial value. As a result, trees that have been genetically engineered for research purposes have the potential to be deployed commercially. However, government regulators and the public have concerns about releasing fully fertile transgenic trees. Thus, in a separate project, we are attempting to engineer reproductive sterility. This outcome will not only provide for transgene confinement, but will prevent photosynthate being diverted away from vegetative growth to support reproductive effort. Because sterile trees will grow faster, less land will be needed to produce a given amount of biomass.

Project Director: Dr. Mike Jenkins
10/01/2018 - 06/01/2023

Learn More About Us

Jarred Brooke gives a presentation on forest management for deer
Ohio River Valley Woodlands and Wildlife Workshop Offers Chance to Learn From Extension Specialists

Do you want to learn how to get the most out of your property? Make plans to attend the 2024 Ohio...

Read More
View of the 12 Apostles on the Great Ocean Road in Melbourne; Lauren Wetterau takes a selfie while doing reef flat surveys; view of the landscape from the Karunda Scenic Railway
FNR Field Report: Lauren Wetterau Caps Purdue Experience Studying Abroad in Australia

Before Lauren Wetterau graduated with her degree in wildlife in December, she had one more...

Read More
Professor emeritus Carl Eckelman sits in front of his 89th birthday cake; a least bell vireo sits on a branch; a juvenile eastern hellbender found in the Blue River in the summer of 2023
FNR's Most Read Stories of 2023

In 2023, our FNR website featured news stories on topics ranging from student, faculty, staff and...

Read More
A doe in a grassy field, a spotted salamander and an osage orange tree with fruit underneath it
FNR's Top Extension Stories of 2023

In 2023, our FNR Extension website featured stories on topics ranging from wildlife...

Read More
Lara Santiago-Sacarello drives a boat during her summer as an oyster farm intern in Maine
FNR Faces in the Crowd: Lara Santiago-Sacarello

Over the past 18 months, Lara Santiago-Sacarello has studied abroad in Australia, interned in the...

Read More
The front facade of Pfendler Hall with its steps and columns
FNR Recognizes 2023 Department Service Award Honorees

The Purdue Department of Forestry and Natural Resources announced its 2023 service award winners...

Read More