Modification of the Lignin biosynthetic pathway in populus to improve its utility as a bioenergy crop

Modification of the Lignin Biosynthetic Pathway in Populus to Improve its Utility as a Bioenergy Crop Mc-Intire Stennis Project, photo of tree leaves.Concerns about energy security and the environment have prompted policymakers in the U.S. to explore options for substituting petroleum-based fuels with renewable, sustainable biofuels. The primary liquid biofuel used globally is ethanol. In 2017, 15.8 billion gallons of fuel ethanol were produced in the U.S., a vast majority of which was derived from corn (Renewable Fuels Association, 2018). When a significant portion of the corn crop is diverted away from its primary use (food and feed), the cost of a wide variety of commodities is affected. To meet the growing demand for renewable fuels, while minimizing disruptive economic effects, alternative feedstocks will be needed. Poplars (species within the genus Populus) offer several advantages over other dedicated bioenergy crops, including its ability to flourish on marginal lands (see below). A major impediment for the use of poplar wood or any other cellulosic feedstock is the recalcitrance of lignin. The proposed research will help enable us to assess the benefits that could accrue from using lignin-modified poplar as a feedstock for producing biofuels. Our results with poplar can be used as a guide for other researchers who are attempting to improve the conversion efficiency of other cellulosic feedstocks.

In addition to being a versatile model system, poplars also have commercial value. As a result, trees that have been genetically engineered for research purposes have the potential to be deployed commercially. However, government regulators and the public have concerns about releasing fully fertile transgenic trees. Thus, in a separate project, we are attempting to engineer reproductive sterility. This outcome will not only provide for transgene confinement, but will prevent photosynthate being diverted away from vegetative growth to support reproductive effort. Because sterile trees will grow faster, less land will be needed to produce a given amount of biomass.

Project Director: Dr. Michael Saunders
10/01/2018 - 09/30/2023

Learn More About Us

Chestnut Oak leaves
Intro to Trees of Indiana: Chestnut Oak

Meet the Chestnut Oak or Quercus montana, which has dark, deeply ridged bark; small, evenly lobed...

Read More
Swamp white oak leaves
Intro to Trees of Indiana: Swamp White Oak

Meet Swamp White Oak or Quercus bicolor, which has leaves with wavy, uneven lobed margins with...

Read More
Dr. Shaneka Lawson with her REM Presidential Safety Award
Lawson Named REM Presidential Safety Award Honoree

Dr. Shaneka Lawson, a USDA Forest Service Research Plant Physiologist and FNR adjunct assistant...

Read More
2022 John F. Datena Distinguished Forester Award honorees Burney Fischer, Joe Schuerman Jr., and Ken Day
Alumni Fischer, Schuerman Honored with Datena Distinguished Forester Award

Three foresters with exemplary careers, including two Purdue Forestry and Natural Resources...

Read More
Bur oak leaves
Intro to Trees of Indiana: Bur Oak

Meet bur oak or Quercus macrocarpa, which features leaves with rounded lobes, highlighted by deep...

Read More
White oak leaves
Intro to Trees of Indiana: White Oak

Meet white oak or Quercus alba, one of the most common upland hardwood species in Indiana, which...

Read More