Improve Bioenergy Populus Crops

Modification of the Lignin biosynthetic pathway in populus to improve its utility as a bioenergy crop

Modification of the Lignin Biosynthetic Pathway in Populus to Improve its Utility as a Bioenergy Crop Mc-Intire Stennis Project, photo of tree leaves.Concerns about energy security and the environment have prompted policymakers in the U.S. to explore options for substituting petroleum-based fuels with renewable, sustainable biofuels. The primary liquid biofuel used globally is ethanol. In 2017, 15.8 billion gallons of fuel ethanol were produced in the U.S., a vast majority of which was derived from corn (Renewable Fuels Association, 2018). When a significant portion of the corn crop is diverted away from its primary use (food and feed), the cost of a wide variety of commodities is affected. To meet the growing demand for renewable fuels, while minimizing disruptive economic effects, alternative feedstocks will be needed. Poplars (species within the genus Populus) offer several advantages over other dedicated bioenergy crops, including its ability to flourish on marginal lands (see below). A major impediment for the use of poplar wood or any other cellulosic feedstock is the recalcitrance of lignin. The proposed research will help enable us to assess the benefits that could accrue from using lignin-modified poplar as a feedstock for producing biofuels. Our results with poplar can be used as a guide for other researchers who are attempting to improve the conversion efficiency of other cellulosic feedstocks.

In addition to being a versatile model system, poplars also have commercial value. As a result, trees that have been genetically engineered for research purposes have the potential to be deployed commercially. However, government regulators and the public have concerns about releasing fully fertile transgenic trees. Thus, in a separate project, we are attempting to engineer reproductive sterility. This outcome will not only provide for transgene confinement, but will prevent photosynthate being diverted away from vegetative growth to support reproductive effort. Because sterile trees will grow faster, less land will be needed to produce a given amount of biomass.

Project Director: Dr. Mike Jenkins
10/01/2018 - 06/01/2023

Learn More About Us

Purdue Digital Forestry Students
Purdue digital forestry students win first prize in 2024 Annual GeoChallenge

A team of digital forestry graduate students from Purdue University won first prize in the...

Read More
Purdue TWS president Celia Parton and master's student Emma Johnson accept the plaque for North Central Region Student Chapter of the Year at the Midwest Fish and Wildlife Conference.
Student Chapter of the Wildlife Society Named North Central Region Chapter of the Year

The Purdue student chapter of The Wildlife Society was named as the North Central Region’s...

Read More
A photo of a wildfire provided by Blake Stanton.
FNR Alumni Assist During Wildfire Season

Wildfire season can extend from five to more than seven months in length, occurring mostly in the...

Read More
Walt Beineke stands next to one of the space sycamores he planted on his property.
FNR Remembers Professor Emeritus Walt Beineke

Dr. Walt Beineke, a 1960 forestry alumnus and a faculty member for more than 30 years, passed...

Read More
Mary Beth Adams stands in front of a sign publicizing her visit to Nanjing Normal University in China.
Distinguished Alumna Adams Travels to China for Scientific Exchange Opportunity

Dr. Mary Beth Adams, a 2016 Purdue Distinguished Agricultural Alumni Award honoree and 2020...

Read More
Ashley Higdon and Dr. Barny Dunning birding; a white oak grove; a white-tailed deer
FNR's Most Read Stories of 2024

2024 was a productive year for Purdue Forestry and Natural Resources across the three land grant...

Read More