Improve Bioenergy Populus Crops

Modification of the Lignin biosynthetic pathway in populus to improve its utility as a bioenergy crop

Modification of the Lignin Biosynthetic Pathway in Populus to Improve its Utility as a Bioenergy Crop Mc-Intire Stennis Project, photo of tree leaves.Concerns about energy security and the environment have prompted policymakers in the U.S. to explore options for substituting petroleum-based fuels with renewable, sustainable biofuels. The primary liquid biofuel used globally is ethanol. In 2017, 15.8 billion gallons of fuel ethanol were produced in the U.S., a vast majority of which was derived from corn (Renewable Fuels Association, 2018). When a significant portion of the corn crop is diverted away from its primary use (food and feed), the cost of a wide variety of commodities is affected. To meet the growing demand for renewable fuels, while minimizing disruptive economic effects, alternative feedstocks will be needed. Poplars (species within the genus Populus) offer several advantages over other dedicated bioenergy crops, including its ability to flourish on marginal lands (see below). A major impediment for the use of poplar wood or any other cellulosic feedstock is the recalcitrance of lignin. The proposed research will help enable us to assess the benefits that could accrue from using lignin-modified poplar as a feedstock for producing biofuels. Our results with poplar can be used as a guide for other researchers who are attempting to improve the conversion efficiency of other cellulosic feedstocks.

In addition to being a versatile model system, poplars also have commercial value. As a result, trees that have been genetically engineered for research purposes have the potential to be deployed commercially. However, government regulators and the public have concerns about releasing fully fertile transgenic trees. Thus, in a separate project, we are attempting to engineer reproductive sterility. This outcome will not only provide for transgene confinement, but will prevent photosynthate being diverted away from vegetative growth to support reproductive effort. Because sterile trees will grow faster, less land will be needed to produce a given amount of biomass.

Project Director: Dr. Mike Jenkins
10/01/2018 - 06/01/2023

Learn More About Us

Alyssa Johnson holds a turtle; Alyssa Johnsons shows off a small salamander; Alyssa Johnson gives a thumbs up during a field study, wearing goggles, a mask and rubber gloves.
Meet FNR Outstanding Junior Alyssa Johnson

Wildlife major Alyssa Johnson has excelled in the Purdue Department of Forestry and Natural...

Read More
FNR alumna Olivia Andrus-Drennan films researchers on a boat at sea
FNR alumna’s wildlife documentary “Dolphin Dilemma” premieres at Cannes Film Festival

Forestry and Natural Resources (FNR) alumna Olivia Andrus-Drennan never expected that an unpaid...

Read More
Dr. Rob Swihart, Bob Burke and others at an HTIRC meeting in 2016.
FNR Remembers Alumnus, HTIRC Advisory Committee Member Bob Burke

Robert Dean “Bob” Burke, who received his bachelor’s degree from Purdue...

Read More
Aquatic sciences majors Ian Fleming, Isaac Jones, Yang Liu, Emma Engel, Emily Ragsdale, Megan Merryman, Colleen O’Toole, Kaitlyn Sinclair; Wildlife major Keegan Abeson; Wildlife majors Alexis Proudman, Anne Talbot, Sophia Flores and Ruby Sanders; wildlife major Katie Arnold.
FNR Celebrates Spring 2024 Graduates

Purdue Forestry and Natural Resources welcomed 62 individuals to its alumni ranks after the May...

Read More
The Wildlife Society students hold a plaque for overall conclave winner; a student holds radio telemetry equipment; students hold binoculars while birding
Purdue TWS Hosts North Central Section Conclave

The Purdue Student Chapter of The Wildlife Society welcomed fellow students from across the...

Read More
Eastern hellbender salamanders eat bloodworms and swim in an indoor raceway
Farmers Helping Hellbenders RCPP Program Accepting Applications

The Farmers Helping Hellbenders program is accepting applications through May 10 for the second...

Read More