Skip to Main Content

Study finds key to plant growth control mechanism

A Purdue University study has mapped a complex series of pathways that control the shape of plant cells. The findings are an important step toward customizing how plants grow to suit particular agronomic needs and improving the quality of the cotton grown in the United States.

Cotton production is a $25 billion industry in the United States, but the types of cotton farmers can grow here is of lesser quality than premium Egyptian or Pima cottons, which have smaller fiber diameters. Daniel Szymanski, professor in the Department of Botany and Plant Pathology, analyzed how intracellular signaling networks pattern cell walls to generate particular cell shapes and sizes. This knowledge from the Arabidopsis model system can be used to generate cotton fiber cells with smaller diameter or increased strength.

In findings published in the journal Current Biology, Szymanski described how microtubules and actin, protein polymers that form the cytoskeletons of plant cells, are organized to specify the mechanical properties of cell walls that define cell shape.

Szymanski’s group found that microtubules entrap a protein called SPIKE 1 within the apex of a cell where SPIKE 1 recruits additional protein machineries that cause actin filaments to form. Actin filament networks are then organized as roadways for long-distance intracellular transport and the regulated delivery of cell wall materials that are necessary for cell growth.

“SPIKE 1 is a master regulator in cells, a switch that when activated determines the time and location where actin networks are polymerized,” Szymanski said.

The location and activity of SPIKE1 is important. Without it, growth is misregulated, leading to distorted cell shapes that do not taper properly. The SPIKE1 protein is one of a growing number of tools that could be used to program the size and shapes of economically important cells, including cotton fibers.

Szymanski said this new understanding will also likely play a broader role in designing plants that have different cell shapes and sizes.

“Cells are building blocks for tissues and organs, and they have the potential to influence key traits like leaf size,” Szymanski said. “This work provides a knowledge base that will enable cell, tissue and organ engineering.”

A National Science Foundation Molecular and Cellular Biosciences Grant supported this research. 

Daniel Szymanski used the model plant Arabidopsis (in his hand) to map the complex pathways that control plant cell shape. The findings may be key to improving the quality of cotton (in the background) grown in the United States. (Purdue Ag Communication photo/Tom Campbell) Daniel Szymanski used the model plant Arabidopsis (in his hand) to map the complex pathways that control plant cell shape. The findings may be key to improving the quality of cotton (in the background) grown in the United States. (Purdue Ag Communication photo/Tom Campbell)

Featured Stories

Black and grey dog sitting in a pile of leaves, wearing an orange harness and Halloween bandana.
Tips to keep your pets safe this Halloween

As Halloween approaches, don’t forget about your furry friends and how the excitement of...

Read More
Mount Herbaria
Finding community and purpose in plant science

For Kit Mount, a sophomore from Carmel, Indiana, choosing a college major wasn’t easy at...

Read More
entm table
Entomology at Homecoming 2025

A brief appreciation post for support shown at the Ag tent at Purdue's 2025 Homecoming weekend.

Read More
Unfinished P statue on the Purdue campus in the fall
FNR Personnel Earn National Awards, Recognition

Several FNR affiliated individuals garnered national attention for their research, teaching and...

Read More
Josh Widhalm
Josh Widhalm appointed director of Purdue Center for Plant Biology

Josh Widhalm, associate professor of horticulture and landscape architecture (HLA), has been...

Read More
Members of the Purdue Student Farm holding the TEAM Award.
Purdue Student Farm wins 2025 TEAM Award

The Purdue Student Farm (PSF), a small-scale sustainable farm managed by the Department of...

Read More
To Top