Skip to Main Content

Study finds key to plant growth control mechanism

A Purdue University study has mapped a complex series of pathways that control the shape of plant cells. The findings are an important step toward customizing how plants grow to suit particular agronomic needs and improving the quality of the cotton grown in the United States.

Cotton production is a $25 billion industry in the United States, but the types of cotton farmers can grow here is of lesser quality than premium Egyptian or Pima cottons, which have smaller fiber diameters. Daniel Szymanski, professor in the Department of Botany and Plant Pathology, analyzed how intracellular signaling networks pattern cell walls to generate particular cell shapes and sizes. This knowledge from the Arabidopsis model system can be used to generate cotton fiber cells with smaller diameter or increased strength.

In findings published in the journal Current Biology, Szymanski described how microtubules and actin, protein polymers that form the cytoskeletons of plant cells, are organized to specify the mechanical properties of cell walls that define cell shape.

Szymanski’s group found that microtubules entrap a protein called SPIKE 1 within the apex of a cell where SPIKE 1 recruits additional protein machineries that cause actin filaments to form. Actin filament networks are then organized as roadways for long-distance intracellular transport and the regulated delivery of cell wall materials that are necessary for cell growth.

“SPIKE 1 is a master regulator in cells, a switch that when activated determines the time and location where actin networks are polymerized,” Szymanski said.

The location and activity of SPIKE1 is important. Without it, growth is misregulated, leading to distorted cell shapes that do not taper properly. The SPIKE1 protein is one of a growing number of tools that could be used to program the size and shapes of economically important cells, including cotton fibers.

Szymanski said this new understanding will also likely play a broader role in designing plants that have different cell shapes and sizes.

“Cells are building blocks for tissues and organs, and they have the potential to influence key traits like leaf size,” Szymanski said. “This work provides a knowledge base that will enable cell, tissue and organ engineering.”

A National Science Foundation Molecular and Cellular Biosciences Grant supported this research. 

Daniel Szymanski used the model plant Arabidopsis (in his hand) to map the complex pathways that control plant cell shape. The findings may be key to improving the quality of cotton (in the background) grown in the United States. (Purdue Ag Communication photo/Tom Campbell) Daniel Szymanski used the model plant Arabidopsis (in his hand) to map the complex pathways that control plant cell shape. The findings may be key to improving the quality of cotton (in the background) grown in the United States. (Purdue Ag Communication photo/Tom Campbell)

Featured Stories

Bryan Pijanoski with sound equipment
The sound of the world

It’s summer, but Bryan Pijanowski is as busy as ever. He’s working on several grant...

Read More
ag econ
Trey Malone named as Boehlje Chair in Managerial Economics for Agribusiness

“A business newspaper published an interview with me a few years ago titled, ‘Ag...

Read More
Purdue College of Agriculture.
Virtual Tour Brings Forest Management for the Birds to Life

How does forest management affect wildlife, specifically birds? Which birds prefer which types of...

Read More
Students on the Sweden study abroad trip stand in front of a church
FNR Field Reports: Lucas Cacula Offers Week 2 Update from Sweden Study Abroad Program

Throughout the 2024 Sustainable Natural Resources study abroad course in Sweden, FNR...

Read More
Wilford tends to Gracie the cow.
Fields of Discovery: From track to trough— leaping into research

This summer, Rieko Wilford is making big leaps researching methane emissions; on the track,...

Read More
Linda Prokopy
Horticulture and Landscape Architecture department head honored by Conservation Technology Information Center

Linda Prokopy, department head and professor of Horticulture and Landscape Architecture at Purdue...

Read More
To Top