Skip to Main Content

Fishing may lead to rapid changes in Great Lakes fish

Evolution is often viewed through the lens of thousands of years. But it may have taken humans only a century or so to force evolutionary changes to fish in the Great Lakes, according to a Purdue University report.

Environmental factors over long periods of time often lead to beneficial traits in animals. But Tomas Höök, a professor in the Department of Forestry & Natural Resources and director of Illinois-Indiana Sea Grant, and colleagues believe there is evidence of fisheries-induced evolution (FIE) in the Great Lakes.

“Fishing and harvesting creates strong pressure that could select for certain genetic material in a fish population and lead to rapid human-induced evolution of the population,” Höök said.

A review, published in the Journal of Great Lakes Research, presents the case for rapid evolution, including case studies of two important fishery species — yellow perch and lake whitefish.

For yellow perch, Lake Michigan commercial fishing operations in the early 1990s overharvested perch, in particular large female fish. This led to an abundance of male fish as well as smaller females, since they were the most likely to have an opportunity to reproduce.After a collapse of yellow perch populations, commercial fishing for the species was shut down and recreational angling for the species was restricted. Research shows that yellow perch quickly started to sexually mature later and at larger sizes once they weren’t susceptible to harvest.

“Importantly, this research suggests that FIE can occur rapidly, but that changes are reversible,” wrote the authors, which included Erin Dunlop from the Ontario Ministry of Natural Resources and Forestry, as well as Zachary Feiner and Höök from Purdue.

Lake whitefish populations have been affected by overfishing and invasive species in Lake Michigan and Lake Huron. Models suggest that high harvest rates and harvesting before whitefish reach sexual maturation could lead to rapid declines in population and the size at which fish mature.

Höök said fisheries-induced evolution has been widely studied in marine systems, but more needs to be done on freshwater species since many can be important ecologically and commercially.

“We need to assess the potential for fisheries-induced evolution in these systems to better understand the extent to which fishery managers can and should think about FIE when making key management decisions affecting fish populations,” Höök said.

Featured Stories

Dog outdoors drinking water
Keeping your pets safe during the dog days of summer

As temperatures and humidity rise across the U.S., Candace Croney, director of the Center for...

Read More
Sonling Fei in front of digital trees
Digital forestry can help mitigate and prevent wildfires

The National Interagency Fire Center reports that, as of this writing, 19,444 fires have burned...

Read More
Researcher uses pipette on parsley plant
Researchers examine nanotechnological methods for improving agriculture

Nanoscale particles could potentially help address agricultural and environmental sustainability...

Read More
Diane Wang gathers plant data with a student.
Fields of Discovery: High school students join Purdue professors in research

High school students join Purdue professors to learn about research opportunities in agriculture...

Read More
a tractor spreads gypsum across a field and a soil probe has a sample of six inches of a dark brown soil in the metal tube
How Purdue researchers and the USDA are finding ways to bury carbon beneath our feet

Soils are a rare win-win when it comes to burying the carbon released from burning fossil fuels....

Read More
Wilford tends to Gracie the cow.
Fields of Discovery: From track to trough— leaping into research

This summer, Rieko Wilford is making big leaps researching methane emissions; on the track,...

Read More
To Top